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Summary (English)
Global and increased awareness of climate changes are apparent, andwithin the EU, strengthened energy
policies are put in force to reduce greenhouse gas emissions. By accounting for 40% of the total energy
end-use, buildings are the single most energy-intensive consumer, and the residential sector alone, ac-
counts for 25% with space heating as the dominant share.

With the currentEUEnergyPerformance inBuildingsDirective (EPBD), eachmember state is instructed
to establish a national building renovation plan and conduct an energy performance screening of the
building stock. The aim is to increase the building renovation rate and the effect of the renovations.

Despite all the initiatives, there exists a well documented and rather large discrepancy between antici-
pated and actual energy consumption in buildings. Furthermore, the gap can hardly be quantified by
evaluating the energy consumption alone. The reason is that occupants, weather, and the building qual-
ity affect it. The focus of this PhD thesis is therefore to develop methods to quantify the performance
of buildings and to separate the reasons for the energy use.

Earlier research has shown promising results in terms of identifying thermal building performance char-
acteristics based on data-driven quasi-stationary and dynamical mathematical models. A special focus
has been on the transition ofmodelling techniques applied on unoccupied and thermally controlled test
buildings, to reliable modelling techniques applied on occupied buildings.

It has been shown inPaperC thatmethods relyingononlyheat consumptionmeasurements andweather
data are capable of quantifying the heat loss coefficient, solar transmittance, influence ofwind, transition
period etc. Indications of the occupants’ effect on energy use have been estimated as well.

Paper D showed that time constants and the building’s energy flexibility (i.e. energy demand-shifting
capabilities) can be obtained frommeasurements of only the indoor and outdoor temperature.

Formore detaileddynamical grey-boxmodelling techniques, a novel approach to sunpositiondependent
solar gain estimation has been proposed in Paper B.

The thesis discusses the importance of handling the disturbances caused by the occupants’ interaction
with the building. In Paper A, a method for estimating the occupancy status in dwellings has been
proposed, with the intention of describing model noise in grey-box models in a more detailed manner.

The work of this thesis outlines new scalable approaches for documentation and screening of thermal
building performance and energy flexibility. New modelling techniques have been presented and dis-
cussed in order to increase the reliability of data-driven models. The combination of the intensified en-
ergy data collection within the EU and reliable methods for thermal building performance assessments
is believed to bring us closer to targeted building renovation strategies, and evidence-based energy per-
formance documentation of buildings.
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Resumé (Danish)
En global og øget opmærksomhed på klimaændringer ses tydelig, og inden for EU er skærpede energipo-
litikker blevet introduceret med det formål at reducere udledningen af drivhusgasser. Med 40% af det
totale energi slut-forbrug, er det bygninger, der har det mest intensive energiforbrug. Boliger alene står
for 25 %, hvor rumopvarmning er den dominerende andel.

Med det nuværende EU-direktiv for bygningers energimæssige ydeevne (EPBD), skal hver medlemsstat
formulere en national bygningsrenoveringsplan og kortlægge energiydeevnen af bygningsmassen. Målet
er at øge bygningsrenoveringsraten og effekten af renoveringerne.

Trods alle initiativerne findes der et veldokumenteret og stort spænd mellem forventet og faktisk energi-
forbrug i bygninger. I tillæg til det er spændet svært at kvantificere ved alene at evaluere energiforbruget.
Dette skyldes, at både brugere, vejr og byggekvalitet påvirker det. Fokusset i denne PhD-afhandling er
derfor at udvikle metoder til at kvantificere bygningers ydeevne og at separere årsagerne til energiforbru-
get.

Tidligere forskninghar vist lovende resultater ift. identifikation af termiskebygningsydeevne-karakteristikker
baseret pådatadrevne kvasi-stationære ogdynamiskematematiskemodeller.Der har været et særligt fokus
på overgangen fra modelleringsteknikker anvendt på ubeboede og termisk kontrollerede testbygninger
til pålidelige modelleringsteknikker anvendt på beboede bygninger.

Det er vist i Artikel C, at metoder der kun bygger på varmeforbrugsmålinger og vejrdata kan kvantifi-
cere varmetabskoefficienten, solindstrålingen, vindens effekt, overgangsperioden m.m. Indikationer af
brugernes påvirkning af energiforbruget er ligeledes estimeret.

Artikel D viser, at tidskonstanter og bygningens energifleksibilitet (evnen til at tidsforskyde energibeho-
vet) kan bestemmes ud fra målinger af kun inde- og udetemperatur.

For mere detaljerede dynamiske grey-box-modelleringsteknikker, er der i Artikel B forestålet en ny til-
gang til estimering af solpositionsafhængigt solvarmetilskud.

Afhandlingen diskuterer vigtigheden af at håndtere forstyrrelser forårsaget af brugernes interaktionmed
bygningen. I Artikel A er der fremlagt en metode til at estimere brugerstatussen i boliger. Intentionen
er at beskrive modelstøj i grey-box-modeller mere detaljeret.

Afhandlingen udlægger nye skalerbare metoder til at dokumentere og kortlægge termisk bygningsydeev-
ne og energifleksibilitet. Nye modelleringsteknikker er blevet præsenteret og diskuteret med det formål
at øge troværdigheden af datadrevne modeller. Kombinationen af den intensiverede energidataindsam-
ling i EU og troværdige metoder til at bestemme bygningers ydeevne vil antageligt bringe os tættere på
målrettede bygningsrenoveringsstrategier og evidensbaseret dokumentation af bygningers energimæssige
ydeevne.
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1 Introduction

1.1 Motivation
Humans are rather sensitive to outdoor environmental conditions, such as temperature, rain, and wind.
For that reason, humans have lived in caves, huts or buildings for thousands of years

During the same period, the requirements to the indoor environment have increased. Temperatures are
only accepted in an interval of around 5 ◦C, and humidity, CO2 concentrations and even air movements
are only accepted for rather narrow intervals as well. Consequently, the buildings are equipped with an
increasing amount of technical equipment, monitoring systems, etc., to maintain the desired comfort
levels, while keeping the energy consumption at a minimum.

Today, around 40% of the total end-use energy consumption is related to building operation in EU [1],
and similar numbers are expected to be found globally. Furthermore, the vast majority of the buildings
which exist today will still be in function in 2050 [2]. Consequently, the focus on building renovation
has increased significantly to decrease the greenhouse gas emission, as seen in the latest EU Energy Per-
formance in Buildings Directive [3, 4].

Even though the share of renewable energy is increasing [1], renovation of the building stock is still of
first priority in order to reduce the energy consumption. In relation to the Smart Readiness Indicator
(SRI) definition in the EPBD [4], 10 principles to deliver real benefits for Europe’s citizens are listed in [5].
Principle number one is: maximise the buildings’ energy efficiency first.

The reason is stated rather clear by Jørgen Nørgaard, associate professor, emeritus at DTU Civil Engi-
neering: One unit of energy saved, is better than any unit of energy produced. The message is that any
produced unit of energy—no matter how green— is initially associated with emission of greenhouse
gases.

As a consequence of the need for reduction of greenhouse gas emissions on a global scale, and the fact that
the majority of the existing buildings will remain for many years to come, different initiatives to increase
thebuilding renovation rate has appeared. Amongothers is the renovation goals established in theEPBD;
initiatives such as energy performance certifications (EPCs); and consortiums such as BetterHome [6].

However, the renovation rate is still below 1% for non-residential buildings, and the aim is 3 % [7]. In
addition to the low renovation rate, the EPCs, which should work as a security for the buildings energy
performance, seems to have flaws as well. In 2018, between 20 and 30% of the Danish EPCs were es-
timated to be wrong [8]. It seems more like the rule than the exception, that buildings consume more
energy than anticipated as discussed in Chapter 3.

In light of that, reliable tools for pinpointing big potential energy savings and documenting buildings
thermal performance seem to be missing.

Today there does not exist any tools, which on a large scale can identify, quantify and analyse the rea-
sons for the performance gap. Consequently, there is no efficient opportunities to identify and tailor
renovation strategies for the worst performing share of the building stock. Additionally, there are no
operational methods to document the energy performance of the renovations.
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In the building design phase, several assumptions are made in order to estimate the future energy con-
sumption and to ensure that the building fulfils the energy frame. A typical misconception is however
that the calculations, and especially the dynamical building simulations, provide the future energy con-
sumption of a given building. This is far from the case. Instead, the energy calculations of the EPCs
meant for comparisons across the building stock, and dynamical building simulations are meant for de-
sign optimisation. None of themethods are therefore intended for actual prediction of the future energy
consumption.

That fact has an inexpedient consequence. The thermal building performance can hardly be validated as
it is practically infeasible to distinguish between heat consumption related to the building, the weather,
and especially the occupants’ behaviour.

In the project, REBUS – Renovating Buildings Sustainably, the focus on quantifying the actual energy
performance of buildings has emerged. REBUS is a partnership representing the entire value chain of the
building construction industry [9]. Thepartners areCOWIA/S, theDanishTechnological Institute, En-
emærke&PetersenA/S, FrederikshavnHousingAssociation,Henning LarsenA/S,HimmerlandHous-
ing Association, Saint-Gobain Denmark A/S, Aalborg University/SBi, and the Technical University of
Denmark (DTU).

REBUS aims at making facade renovation solutions for 1960s to 1970s social housing apartments, and
by that reducing the energy consumption by 50%, the resources by 30%, and increase the productivity
by 20%. The specific task of this PhD thesis—which is part of the REBUS project—has been to de-
velopmethods for screening for potential energy savings and document the thermal energy performance
after renovations. Special focus has been on the conversion of existing modelling techniques applied on
unoccupied test buildings, to reliable modelling techniques applied to occupied dwellings.

1.2 Research Objectives
The foundation of this PhD thesis is defined by the following research objectives:

Data-driven methods for quantifying the thermal energy performance of buildings has been studied for
several years. The objective of this thesis is, therefore:

1. To make existing methods for thermal building performance analysis on unoccupied thermally
controlled test buildings, applicable to actual occupied buildings.

2. To identify typical pitfalls when working with data-driven models on occupied buildings, and
formulate and test new approaches to tackle these issues.

3. To refine existing data-driven methods for thermal building performance analysis to obtain more
robust assessment of the building performance.

The occupants’ behaviour of the energy consumption cannot be neglected, two key objective are, there-
fore:

4. To develop methods for identification of occupants’ presence, which can be used to refine the
treatment of disturbances related to occupants in various building performance models.

5. To develop methods for separating and quantifying the causes of heat consumption. That being
occupants, weather and the building envelope related causes.
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1.3 Thesis Structure
This thesis consists of twoparts. InPart 1 the summary of the thesis is presented. In the following chapter,
Chapter 2, the current state of the European building stock’s energy performance, as well as the trends,
visions, and politics concerning energy performance in buildings are presented. In Chapter 3 the perfor-
mance gap is described and probable reasons for it is occurrence is stated. In Chapter 4 an overview of
the dominating data-drivenmethods for quantifying the thermal performance of buildings are described
and the main issues and concerns by applying these models are stated. Chapter 5 summarises the con-
tribution of this PhD study and discuss the results, findings, limitations, etc. Chapter 6 suggests where
further research should go and draws the last conclusion on this PhD thesis.

Finally, Part 2 includes pre-prints of the articles contained in this study.
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2 Building Energy Conservation in the
European Union

2.1 Energy Use in the European Building Stock
Within the European Union around 45% of the building stock is built before requirements and stan-
dards to the thermal performanceofbuildingswere common. Thermal performance requirements started
to appear more widely around in 1970 [7]. Since the first thermal performance requirements came in
force, the requirements to the energy efficiency have been intensified. However, only 3 % of the building
stock in the EU has energy label A, which corresponds to the level of new buildings [10].

With the release of the energy performance of buildings directive (EPBD) recast in 2010, building reno-
vation with the aim of improving the energy efficiency came to light. For major renovation projects, the
building parts involved should fulfil the minimum energy performance requirement to the extent that it
was technically, functionally and economically feasible [3].

In 2012 the Energy Efficiency Directive (EED) started to encourage the EUmember states to make long
term renovation plans for the building stock and increase the annual rate of building renovation for the
first time [11].

The EU project ZEBRA2020 [12] estimated some of the member state’s renovation rate in 2013 and
2014. France and Germany were the countries with the highest rate (1.75% and 1.49%, respectively),
and Spain and Poland had the lowest (0.08% and 0.12 %, respectively).

The EED also stated that state-owned buildings should undergo energy renovation with an annual rate
of 3 %of the heated or cooled floor area as of January 1, 2014. Also in this case themonitoringwas lacking,
which meant that the fulfilment of the 3 % target was impossible to evaluate. The EU concluded that
the renovation monitoring is poor and for the moment there is no data to assess if the 3 % target has been
reached. However, some studies reveal that the current average building energy renovation rate in the EU
for non-residential is below 1 % [7].

The need for renovations is important as the majority of the building stock which exists today, still, will
exist in 2050. In [2] it is estimated that 85 % of today’s buildings still are in function in 2050.

In the residential sector on average around 65% of the end-use energy consumption is used for space
heating in the European Union. Furthermore, more than 25% of the total end-use energy across all
sectors is consumed in residential buildings, and the total energy use in all buildings accounts for 40%
[1]. This makes the building stock the single most energy-intensive consumer in Europe.

The average total energy consumption for the residential sector is 184 kWh/m2 per year, where non-
residential buildings consume around 40%more.

Based on these numbers, the end-use energy conservation potential is probably one of the largest when
looking at a single energy end-use category. Reducing the space heating for the residential buildings alone
by approximately 6 %, corresponds to a reduction of the total end-use energy in the EU of 1 %.

According to the ZEBRA2020 consortium, the heating demand for buildings can be reduced by 50 to
80% by technical and economically feasible means. That corresponds to a reduction of around 20 to
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Figure 2.1: Final energy consumption in residential buildings in the European Union. Space heating, space cooling and other
energy consumption are specified. Source: EU Buildings Factsheets [7].

30% in the total European end-used energy consumption, or— if those numbers are representative for
the residential buildings on their own—a reduction in the total end-use energy consumption within
EU of approximately 10 to 20% considering residential buildings alone.

In [13] it was estimated that Denmark could achieve 31 % cost-effective reduction in space heating for
the existing national building stock before 2050. The number, however, does not consider a potential
extra heat consumption due to increased thermal comfort after a renovation. A similar number (33 %)
was found by the Danish Building Research Institute (SBi) according to [2].

2.1.1 Energy Performance Certificates
In the EPBD recast from 2010, a set of strengthened requirements to the building energy performance
certificates (EPCs) were introduced. All new buildings, renovated buildings, and buildings over 250m2

owned and occupied by a public authority were required to have an EPC.

The EPC should include information about the energy performance of the building and recommenda-
tion for feasible improvements. Additionally, spot checks should be made of a certain percentage of the
yearly issued EPCs to validate if the certificate is made under reasonable assumptions.

The Danish Energy Agency who are responsible for the validation of the Danish EPCs, published in
2018 a report stating that around 20 to 30% of the building energy labels were wrong that year. That
corresponds to between 12 000 and 18 000 EPCs. The two previous years (2016 and 2017) the error
percentages were 31 and 21 %, respectively.

The Danish Energy Agency stated in 2018 that new data-driven methods for EPC validation will be
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implemented in 2019 to 2021 [8], similar to what Sweden is doing already [14]. Recently, an initiative
for establishing a building energy atlas was announced in [15].

2.2 EU Directives
In 2015 the European Commission agreed on committing to a common energy strategy for the union
[16]. The commission stated five key points regarding energy security; a fully integrated energy market;
energy efficiency; a decarbonised economy; and research, innovation and competitiveness. The strategy
ismanifested in theClean Energy for all Europeans Package, with themost recent version from2019 [17].

Two main directives which lay out the path of energy reduction and decarbonisation of the building
energy use are the Energy Efficiency Directive (EED 2012/27/EU) [11], and the Energy Performance in
Buildings Directive (EPBD 2010/31/EU) [3], as well as the amendments in Directive (EU) 2018/844
[4].

2.2.1 Energy Efficiency Directive (EED)
The Energy Efficiency Directive (EED) has among others, two important requirements to make build-
ing performance monitoring possible and shed light on potential building performance issues to ensure
energy efficiency in the European building stock.

1. The requirements tomeasure the building energy consumption in such amanner that the tempo-
ral energy use is reflected in measurements.

2. Measuring on a level that corresponds to each building unit as long as it is technically and econom-
ically feasible. For multi-apartment and multi-purpose buildings, the heat consumption specifi-
cally, may, therefore, be measured on a central level, and divided among the consumers through
individual heat cost allocators.

Furthermore, as of October 25, 2020, all energy meters and heat cost allocators need to be remotely
readable devices. For meters and heat cost allocators which are installed before October 25, 2020, it is
required that they are remotely readable before January 1, 2027.

Finally, as stated in the EED 2012/27/EU, article 10a, paragraph 2, the member states are required to en-
sure that information on historical consumption or heat cost allocator readings is available upon request
by the end-user, ormade available to an energy service provider designated by the end-user. Furthermore,
article 11 states that end-use customers should have access to their consumption data in an appropriate way
and free of charge.

TheEEDused tooutline thenational requirements for developingbuilding renovations strategies, which
was first introduced in the EED from 2012. However, the requirements have nowmoved to the Energy
Performance in Buildings Directive with the introduction of Directive (EU) 2018/844 [4].

2.2.2 Energy Performance in Buildings Directive (EPBD)
The Energy Performance in Buildings Directive (EPBD) builds on the EED. The current EPBD, which
was updated in 2018 with the Directive (EU) 2018/844 [3, 4], paces the EU member states’ building
stock toward nearly zero-energy buildings by 2050 by setting up definitions, policies and requirements.

The EU member states were required to make an updated renovation strategy by March 2020 and eval-
uate on the previous strategy from 2017. The strategy should be revised by the second quarter of 2024,
and again by January 2029 as part of the national energy and climate plan [18].
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Additionally, themember states are required tooutlinepolicies and actions to target theworst-performing
buildings as well as public buildings; identify cost-effective approaches to building renovation: pro-
mote smart building technologies to strengthen the interconnection of buildings and societies; provide
evidence-based estimates of the expected savings; and establish actions and policies which promote build-
ing renovations. A building performance passport with step-wise renovation road maps for individual
buildings is suggested regarding the latter point.

The EPBD outlines the requirements for national energy performance certificates, spot checks of their
validity, etc. Furthermore, the EPSs of at least public buildings are required to be stored in such a way
that evaluations of the energy performance on the EU building stock are possible and more transparent.

Currently, 24 member states already have national or regional EPC databases and the Czech Republic
and Latvia are currently developing such storage systems.

The EPBD makes room for different EPCs, such that it can be based on measured or calculated energy
performance. For example, in Sweden the energy performance certificates are partly based on measured
energy consumption, rather than calculated consumption alone. After a measurement campaign of 12
months, the energy consumption is registered in anational database andnormalised according toweather
conditions, indoor temperature set-points, and hot water consumption [18].

The Smart Readiness Indicator (SRI) definition set by the European Commission is mentioned in the
EPBD aswell. The SRI serves as an indicator for the building readiness of utilising new renewable energy
sources; adapting the user needs to provide a comfortable and healthy environment in a user-friendly
manner; and to contribute to energy grid operation by e.g. utilising the thermal flexibility of the building
thermal mass as conceptualised in e.g. [19].

All-in-all, the current EPBD has a very strong focus on intelligent energy use, transparency, and docu-
mentationof the union andnations initiatives, aswell as the aids to achieve a highly energy-efficient build-
ing stock. This includes requirements of databases with information on the national building stock’s
energy efficiency; data collection and accessibility for the end-user, Smart Readiness Indicators, etc.

Finally, the EPBD refines the approach of energy performance calculation to reduce the energy needed to
meet the energy demand associated with the typical use of buildings [20]. However, there is no guarantee
that the calculated energy performance is tenable as it has been shown for several years by the Danish
Energy Agency [8]. Additionally, there is certainly not a reason to believe that the energy performance
calculations reflect the actual energy use as it will be shown in Chapter 3.

However, the current EED and EPBD have established a path towards data-driven building energy per-
formance assessment and monitoring approaches. This will potentially give a more accurate picture of
the energy performance in the European building stock, and result in better advise on building renova-
tion strategies.
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3 The Performance Gap
The performance gap of buildings is typically referring to the discrepancy between anticipated and re-
alised energy use (or CO2 emission) in the operational phase.

A comprehensive British study on residential buildings from 2016 on 29 new low-energy homes showed
that the actualCO2 emissionwas two to three times higher than expected [22]. Another British study on
18 new build houses showed that not a single one of them was insulated as well as the design prescribed.
The results from the study are illustrated in Figure 3.1. The evaluation was done by co-heating tests and
discrepancies between 9 and 126% were found [21].

90 refurbished dwellings in Southern Germany were studied, and the findings were published in 2016.
As part of the renovation, the dwellings were equipped with different technical heating and ventilation
solutions. Furthermore, comprehensivebuildingmonitoring systemswere installed tobe able to estimate
the in-use building performance. The study found that the average performance gap varied by 117, 107,
41, and 60% in the years from 2011 to 2014. A maximum discrepancy of 287% was found [23].

In the literature review in [24] it is stated that the average difference between the predicted and realised
energy consumption is 34 %. Furthermore, the dominating reasons for the discrepancy are estimated to
be related to specification uncertainties, occupant behaviour, and poor workmanship. Each of the three
reasons have an estimated effect of 20-60%, 10-80 %, and 15-80 % on energy use.

One study states that buildings with Green Star sustainability ratings perform fairly good. In [25] 70
Green Star rated buildings were investigated by the Green Star association itself. The study found that

Predicted (W/K) Measured (W/K)

104 Semi detached (3)

133 Detached (5)

149 Detached (4)

160 Semi detached (5)

174 End terrace (5)

188 Mid terrace (2)

200 End terrace (2)

221 Mid terrace (1)

61Semi detached (3)

119Detached (5)

131Detached (4)

146Semi detached (5)

89Mid terrace (2)

110End terrace (2)

98Mid terrace (1)

Figure 3.1: Predicted andmeasured whole-house heat loss coefficients (W/K) of 18 new British houses. Not a single house lives
up to the design, and discrepancies between 9 and 126% were found. Data are obtained from [21] and post-processed to make
this chart.
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the majority of the buildings (57 %) performed as predicted or better measured by their greenhouse gas
performance rating.

The magnitude of the gap between predicted and realised greenhouse gas performance was, however,
higher for theunder-performingbuildings, than themagnitudeof the gap for thewell- or over-performing
buildings. Thiswasmeasuredby theperformanceparameter greenhouse gas performance gap inNABERS
energy stars—whatever that means. The actual discrepancy for the 70 buildings was not stated, but
by visual inspection of the figures in the publication [25], the buildings under-perform on average by
0.4 stars. In can therefore be concluded that the majority of the customers (assumingly) are satisfied
with their Green Star certificated building, but the average greenhouse gas emission across the 70 build-
ings is higher than promised, which should be of concern for the society.

Based on the findings in the literature, most buildings show signs of a performance gap. It should, how-
ever, be noticed that different methods are used in different studies, which makes the comparison be-
tween studies difficult. I.e. different energy consumptions may or may not be included in the calcula-
tions. A literature review on energy performance gaps in buildings from 2019 list 10 articles with differ-
ent performance gap definitions [26]. This might also be part of the reason for the various performance
gaps found in the literature.

It has not been possible to find any literature where the general pattern shows that buildings perform as
well, or better than anticipated. Theperformance gap is therefore concluded tobe an evident and existing
phenomenon. Furthermore, the reasons for the performance gap are typically due to uncertainties in the
model specifications; the occupants’ behaviour; and the workmanship [24, 27].

The importance of documenting the performance gap is therefore clear. Without the certainty of the
reasons for the discrepancy, there is no certainty about the realised reduction in energy consumption
and greenhouse gas emission, which is of relevance on a national and global scale. Furthermore, there
is no guarantee that building owners get anything similar to what they have ordered when they build or
renovate— except a bill from the energy consultant.

3.1 The Uncertainty in Building Design and Construction
From the literature on building performance gap, one thing seems to be clear. The buildings rarely per-
form better than anticipated. Time after time, investigations have shown that buildings use more energy
than stated in the design.

One could expect that the deviations from the design would be more symmetrically distributed, rather
than this seemingly skeweddistribution. With aheavyover-representationof under-performingbuilding
one might ask questions like:

• Does occupants’ behaviour always cause a higher energy consumption than expected, and if so,
why have the design practice not adapted?

• Is the weather always causing the realised energy consumption to be higher than predicted?

• Do contractors, in general, deliver a lower quality product than what is on the blueprints?

In the following sections an attempt to answer each of these questions is given.

3.1.1 Occupants’ Effect on the Performance Gap
In [28] an investigation on the occupants’ effect on the energy consumption was carried out. Eight al-
most similar red-brick semi-detached houses located in the western part of Denmark were studied. The
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calculated energy consumption was compared with the measured energy use, which revealed deviations
in the most extreme cases of more than 100%.

A sensitivity study on 13 parameters was investigated. It was found that the vast majority of the differ-
ences were caused by variations in temperature set-points and occupants’ heat loads. The contribution
of the four most influencing factors were the set-point indoor temperature (37 %); occupants heat loads
(22%); natural ventilation and infiltration (20%); and heat loads from appliances (15 %).

Another study concluded that the occupants’ behaviour had a significant impact on the buildings energy
consumption as well [29], and that the differences between various individuals were a major contributor
to the variation. Similarly, in [30] the behavioural effect on the energy consumption was found to be 51,
37, and 11 % of the variance in space heating, electricity, and hot water consumption.

Whether the occupants, in general, give rise to higher energy consumption is hard to say. However, the
studies on this topic agree that occupants have a significant impact on energy consumption. Since the
set-point temperature according to [28] has the highest influence on the energy consumption, it might
be so if they tend to maintain an indoor temperature higher than the design temperature. Also, there
seems to be an overweight of occupants’ related heat losses compared to free heat gains.

It is, however, strongly believed that the common practice of using static occupancy profiles in building
simulation and calculation tools should be avoided. Doing energy performance calculations and build-
ing performance simulation, the building designers should avoid to do “occupancy designing”, i.e. the
act of optimising occupancy behaviour for particular buildings, and instead focus on the building de-
sign. Instead, occupancy profiles should be treated as stochastic processes determined by the building
type. Recent work on stochastic occupants’ profiles and a corresponding occupancy simulator for non-
residential buildings is found in [31, 32]. For dwellings, a similar online occupancy simulator exists [33,
34].

In Paper C, a scalable method for quantifying occupants’ related heat consumption is proposed. Fur-
thermore, amethod to estimate the occupancy status (i.e. sleeping, present and away) intended for amore
accurate description of the occupants’ related model noise in grey-box models is found in Paper A.

3.1.2 Weather’s Effect on the Performance Gap
Another factor which will cause a difference between the predicted and actual energy consumption is
the weather. During the building design, a single synthetic weather file is typically used for the specific
location. This weather data may be designed with particular warm and cold periods, intended to stress
test the building design. The simulation consequently acts as a validation of the buildings capability to
maintain the required comfort levels and keep the peak energy loads at the desired levels.

Even though a lot of work has been carried out on weather data generation, the synthetic weather files
still have pitfalls. For instance they do not represent extreme weather scenarios and are not capable of
describing future climatic changes and microclimates such as urban heat islands [37].

In a study from2017, two commonly used typicalmeteorological year (TMY) [38]weather data files used
for building simulations were tested on a social housing block located in Milan, Italy. The first data set
was based on historic weather data from 1951 to 1970, whereas the other was based on more recent data
from 2015 to 2016.

The results showed that the same dynamical building simulation model provided significantly different
results by applying the twodifferentTMYfiles. Furthermore, theheat demand reducedby approximately
50% by applying the most recent TMY data, and the cooling demand almost tripled [39].
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In [40] the weather-related variations of the total energy consumption among other things were investi-
gated. A series of dynamical simulations were carried out for three types of office buildings, each with
two levels of energy efficiencies. All buildings were tested in all of the 17 ASHRAE climate zones [41],
as well as with one year of synthetic data (TMY3) and the actual weather from 1980 to 2009.

The analysis showed that the energy use for heat, ventilation and air conditioning (HVAC) was influ-
enced the most by using different weather data. The energy consumption for HVAC was in the worst
cases over- or underestimated by 18 and 37%, respectively. For the total energy use the variation was
between 8 and−10 %, where the largest deviations were found in the colder climates.

From the results, it seems like the synthetic weather data do a rather good job at estimating the mean
energy consumption for both HVAC and the overall energy consumption.

Another study on a Danish kindergarten has shown that the effect of the weather data can result in a
variation of the heat demand of roughly±20% [42].

Both studies indicate that the deviations between predicted and realised energy consumption are sym-
metric. That means that in some cases the models will underestimate the energy consumption, and in
other cases, they will overestimate the energy consumption. Conclusively, even though the weather is
a source of significant errors, there is no indication of synthetic weather data in general should lead to
underestimated energy consumption.

The actual weather condition’s influence on the heat consumption is fairly easy to account for by normal-
ising themeasured energy consumption. Estimating building physical parameters by data-drivenmodels
may, on the other hand, be biased due to the model formulations. This is shown and accounted for in
the quasi-stationary model in Paper C. Additionally, Paper B presents a novel sun position dependent
method for obtaining better solar gain estimations in dynamical data-driven models.

3.1.3 Building Design andWorkmanship
A third reason for the performance gap is related to the actual design specifications and theworkmanship.

In a study on insulation of brick cavity walls, it was demonstrated how the heat loss through several
identical designedwalls varied [44]. The study investigated six walls over twowinter seasons. Half of the
walls were insulated as intended in the design— i.e. proper contact between the insulation material and
the inner wall inside the cavity— and the other half were constructed with intentional air gaps between
the insulation and the innerwall. The samewalls were testedwith andwithout air tightening of the inner
wall.

A post-processing of the results in [44] is shown in Figure 3.2. The results show two things which are
relevant for understanding the performance gap. First, the workmanship is of crucial importance to
obtain the design requirements. Second, the actual insulation levels of the walls are not symmetrically
distributed around thedesign value. The latter is important tounderstand thedifferences between energy
optimisation, design, and buildability.

In the field of structural engineering, the term tolerances is crucial. It serves the simple purpose of allow-
ing smaller deviation between the technical drawings and the actual physical structure on the building
site. The reasoning is that it is more difficult to make bolts and nuts fit on the building site than it is in a
CAD (computer-aided design) software.

Looking at the results in Figure 3.2 again, 11 out of the 12 U values representing good workmanship are
equal to or higher (worse) than anticipated. Only in one case is the U value lower. That means that only
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Figure 3.2: Strip chart of deviation between expected and actual U values obtained from lab tests. The numbers are rounded
to the nearest 5 %. The red dots indicate realised U values of proper workmanship, whereas the black dots indicate realised U
values obtained by poorworkmanship. The beta distribution overlay shows a conceptual distribution of the expected deviation.
Data are obtained from [44] and post-processed to make this chart.

exact workmanship will lead to the design requirements, and the probability of achieving better perfor-
mance than specified in the design is negligible—or in other words: the actual thermal performance of
building envelopes are condemned to fail due to a designer optimism bias.

An obvious way of solving this issue is to introduce a measure of uncertainty in the energy performance
calculations, analogue to tolerances used in structural engineering. One approach to this has already
been developed and tested on real buildings by Aarhus University inDenmark [45]. Themethod (called
BeREAL) is an add-on to the current mandatory energy performance calculation tool, Be18, used in
Denmark [46]. BeREAL is used for making corrections to the standard Be18 calculation by applying
more realistic usage schedules, actual weather data for the location, more realistic energy use for various
devices like computers, servers, lighting, etc [45]. Finally, BeREAL uses a 3-point estimation technique
for constructing an approximate distribution of reasonable building thermal properties. The 3-point
estimation technique was originally proposed in [47], and works by setting a pessimistic, an optimistic,
and the most likely estimate for a certain building parameter. Based on those numbers, a distribution
of the parameter is obtained— typically by assuming that the parameter is beta distributed as shown in
Figure 3.2.

Based on the rather simple inputs, the output of theBeREALcalculation is an estimate of the energy con-
sumption with an associated uncertainty measure. Such results are very much in line with the outcome
of data-driven models as those described in Paper B, Paper C, and Paper D.

At last, a more concerning reason for the performance gap is related to the building modellers potential
lack of fundamental understanding of the building physics and the importance of different building pa-
rameters. A study on 108 building modellers with different educations and experience showed that their
ability to determine the most important building physical parameters of a specific building were surpris-
ingly low. 25 % of the building modellers made judgements which were worse than random responses.
Furthermore, no correlation between experience or educational level and the percentage of correct an-
swers were found [48].

3.1.4 Conclusions on the Performance Gap
The documentation of the performance gap found in the literature shows time after time that there is:
either a systematic error in the energy performance calculationswhichmakes predictions lookbetter than
reality; or a negligible focus on well and over-performing buildings. Based on the considerations in the
previous sections, the former seems to be the case.
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There are several pitfalls whichmay lead to a discrepancy between anticipated and realised energy perfor-
mance of buildings as explained in the previous sections. However, one issue is believed to be the main
drivers for the performance gap: the discrepancy between the building designer’s objectives and what is
practically achievable on the building site.

The building designer is working on an idealised building, without uncertainties, whereas craftsmen
are working under real and uncertain conditions. By reflecting the uncertain conditions in the design
practice, the performance gap is believed to shrink significantly. To do that, a few specific things can be
done:

• Be realistic about the design parameters and their distributions.

• Design buildings rather than occupancy profiles. Rely instead on stochastic alternatives.

• Do not estimate the energy performance based on a single calculation or simulation— and defi-
nitely not on the realisation obtained from themost optimistic set of building physical parameters.
Instead, several simulations should be made frommodels with small variations in thermal proper-
ties, weather, and occupancy profiles.

• Accept that the calculated energy performance is uncertain and state it.
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4 Data-driven Methods for Quantifying
Thermal Performance – State-of-the-art

As design tools are based on several assumptions and idealised considerations as described in Chapter 3,
other methods are needed to quantify the actual building performance. One approach is to rely on data,
statistical modelling and knowledge on the physics driving the heat dynamics.

For data-driven models, the description of the thermal dynamics needs to be reduced to estimate all the
parameters. Furthermore, only a fraction of the relevant input variables can be measured. The aim is,
therefore, to describe the most significant thermal dynamics with the data at hand. Typically, this would
be weather data, heat consumption and some data on the indoor climate, such as air temperatures and
CO2 concentrations. Other variables such as the temperatures of the thermal masses, internal heat gains,
and window openings are definitely not irrelevant, but infeasible to measure, and therefore are rarely
included in data-driven thermal models.

As a consequence of the limited data and the simplified models, there will be discrepancies between ob-
servations and predictions. Or as Tor Nørretranders wrote with reference to Kurt Gödel: A formal
description has its limitations; a map can never contain all the details of the terrain without being the ter-
rain itself and is therefore not amap [49]. This is an incontrovertible fact one has to deal with—oneway
or another.

Statistical approaches to model physical systems introduce a convenient way of doing that. The physical
model is associated with a measure of uncertainty. Depending on the model and the estimation tech-
nique, system and observation noise can be estimated separately or as a combined term.

In the following, it is assumed that the reader has some knowledge of time series analysis and mathemat-
ical modelling.

4.1 Quasi-stationary Methods
When time series data are smoothed or filtered, some information in the data— e.g. dynamical charac-
teristics such as time constants and heat capacities or short term effects like a window openings—will
be lost.

The class of quasi-stationary models relies on such data processing in order to determine for instance
heat loss coefficients. By averaging the data for sufficiently long periods, the building conditions can be
treated as stationary, and stationary considerations can be applied.

In the following sections, some common quasi-stationary methods are described.

4.1.1 Average Method
Probably one of the most widely accepted methods for assessing the heat loss coefficient is the average
methoddefined in ISO9869 [50]. Themethod simply determines the heat lossUby the relationbetween
the heat flow through the building envelope, q̇, and the average temperature difference between inside,
Ti, and outside, Te,

U =

∑N
t=0 q̇t∑N

t=0(Ti,t − Te,t)
+ e , (4.1)
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whereN is the number of observations, t is the time step, and e ∼ N(0, σ2) is the normally distributed
error.

The method is simple and builds on steady-state assumptions. This is of course not possible to obtain
for real buildings. Instead the method relies on the assumption that all dynamics are averaged out when
data is obtained for sufficiently long periods.

In [51] a comparison of several steady-state and dynamicalmodels ismade. Applying the averagemethod
on winter data, showed rather good results despite its simplicity. For periods with high outdoor temper-
atures, themodel tends, however, to fail. For these periods the dynamicalmodels such as those presented
in Section 4.2 did a significantly better job at estimating the heat loss coefficient.

Despite the reasonable results obtained in [51] on winter data, the long measurement period and the
additional measurement equipment (heat flowmeter) are both drawbacks of this method. Furthermore,
themethod can only be used to obtain theU value. The information extracted from the data is therefore
rather limited.

Another issue is that a heat flow meter only measures the heat flow in one spot. For that reason, it can
be hard to deduct the total U value when dealing with heterogeneous walls with multi-dimensional heat
transfer.

Substituting the heat flow q̇ in Equation (4.1) with the heat inputs to the building, another average
method is obtained for which the whole-house UA value can be obtained.

4.1.2 Co-heating Methods
The co-heating method, which seems to originate from the late 1970s and early 1980s [52, 53], utilises
quasi-stationary temperature conditions and linear regression to estimate the whole-house heat loss co-
efficient (HLC). The method works by increasing the indoor temperature to a level which makes the
effect of e.g. wind and solar irradiation negligible. From time series measurements of the heating power
and the temperature difference between inside and outside the HLC can be determined. As the overall
HLC comprise of both ventilation and transmission heat loss, it is sometimes separated by estimating
the infiltration rate by means of blower door tests.

The co-heating method has been applied and studied several times. In [54] a review of the published
work on co-heating methods is outlined and the state-of-the-art of co-heating methods is presented.

Somework has also been done to shorten themeasurement period. E.g. as done in theQUB andQUB/e
method [55–57]. The methods work by performing one cooling and one heating experiment for which
the rate of temperature change is determined through linear regression. With the two estimates the heat
loss coefficient and the heat capacity is obtained. During the two experiments, the outdoor temperature
is assumed constant, and the indoor temperature is kept uniform by mixing the indoor air.

The co-heating method requires an experimental setup and that the building is unoccupied. As it is an
on-site experiment-based method, it cannot be used for large scale thermal performance screening and
documentation.

4.1.3 Linear Regression Models
A certain group ofmethods used to estimate thermal characteristics of buildings are the linear regression
models. The linear regression models differ from the co-heating methods by the fact that they rely on
in-use data rather than experimental data. On the other hand, significantly longer measurement periods
are required to obtain reliable results.
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The methods are based on the steady-state heat balance

Φh − Φtr + Φsol + Φint − Φvent + Φmass + Φlatent = 0 , (4.2)

whereΦh is the space heating,Φtr is the transmission losses,Φsol is the solar gain,Φint is the internal heat
gains, Φvent is the ventilation loss, Φmass is the absorption and release of thermal energy in the thermal
mass, andΦlatent is the energy absorption and release due to evaporation and condensation in the thermal
zone.

By lumping the five last terms intoΦx, and using the simplification thatΦtr only consists of transmission
loss to the ambient air, Equation (4.2) can be formulated as the model

Φh = UA (Ti − Te)− Φx + e , (4.3)

where UA is the heat loss coefficient, Te and Ti is the ambient outdoor temperature and the indoor
temperature, respectively, and e ∼ N(0, σ2) is the error term.

The model in Equation (4.3) can be extended and refined. However, a returning concern when mod-
elling dynamical systems such as buildings is to get proper data. Especially accurate weather and indoor
climatic data can be troublesome to obtain. Special weather conditions such as heat islands and turbu-
lent wind conditions may result in discrepancies between the weather data and the actual conditions.
Furthermore, a seemingly simple task such as measuring the indoor temperature involves major pitfalls,
which can corrupt the reliability of the estimated model parameters, such as the heat loss coefficient.

In Figure 4.1 the temperature differences between inside and outside obtained from two different build-
ings are shown. In the first case, four temperature sensors were installed in the living room in different
heights (0.1, 10, 110, and 170 cm above the floor). The data is obtained from an unoccupied test build-
ing at the Fraunhofer Institute in Holzkirchen, Germany. The building is heated by electrical radiators.
For the two most extreme measurements shown in the upper plot of the figure, the average difference
between them is 2.5 ◦C. The average outdoor temperature for the five days shown was−0.1 ◦C.

In the second plot of Figure 4.1 the temperature differences obtained from an occupied apartment in
Aalborg, Denmark is shown. The apartment is a two-room apartment of approximately 55m2 occupied
by an elderly couple. Eight temperature sensors were installed in the apartment in different rooms. Some
rooms had multiple sensors installed. The outdoor temperature for the five days shown in the plot was
−6.0 ◦C. If the twomost extreme temperature differencesmeasured are considered as before, the average
difference between them is 9.6 ◦C.

Looking at the simple steady-state heat balance in Equation (4.3), it is seen that an error of e.g. 10 % in
the temperature difference between inside and outside, will result in an error in the estimated thermal
resistance (UA−1) of 10 % as well.

By considering the temperature differences in Figure 4.1, the implications can be rather serious. For the
first case, the mean difference between the measurements in the most severe case is 12 %, and for the
second case, the difference is 55 %. If a single temperature is used for determining the thermal resistance,
an error of similar order can, therefore, be expected.

With that in mind, it is obvious that a representative temperature can be troublesome to determine.

Butwhat is the true representative indoor temperature after all? For characterisation of thermal building
performance, this must be the temperature which in combination with the true exterior conditions and
heat consumption, reveals the true thermal building properties.
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Figure 4.1: Illustration of variations inmeasured temperature difference between indoor and outdoor in twodifferent buildings.
The first plot shows the temperature difference between the living room (measured in heights of 0.1, 10, 110, and 170 cm
above the floor) and the outside form a Fraunhofer Institute test building. The second plot shows the temperature differences
obtained by measuring the indoor temperature in different locations and rooms in an occupied apartment in Denmark.

Different approaches to estimate such a temperature (or temperatures) can be considered or found in
the literature. Some examples could be: the arithmetic mean temperature at each time step as done
in Paper B; different kinds of weighted means, such as space volume-weighted mean used as in [58];
principal component analysis as in [59–61] etc.

Unless detailed knowledge about the building and the locations of the sensors are known, as in [61],
each approach is a qualified guess of a representative indoor temperature, whichmight ormight not give
reasonable parameter estimates.

Instead of relying on indoor temperature measurements, another approach is to estimate it from data.
Besides eliminating the issue of measuring the representative indoor temperature, this kind of methods
also needs less measured variables from the building. This is naturally an advantage if the methods are
intended to be applied on a large scale.

The energy signaturemethods are one kind ofmodels which often disregard the indoor temperature and
relies on an estimated base temperature at which the building is in thermal balance.

Energy Signature
Some of the earliest work on the energy signature models is found in [62–64]. In the basic form, the
models have the outdoor temperature as the dependent variable and the heat consumption as the inde-
pendent variable. A linear relationship between them is then found. The slope and intersectionwith the
x-axis is the estimated UA value and the base temperature, respectively, as seen from the following.
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By rewriting Equation (4.3), the space heat demand can be expressed by the base temperature Tb =

Ti − ΦxUA−1.

Φh = UA (Ti − ΦxUA−1 − Te) + e (4.4)

= UA (Tb − Te) + e , (4.5)

where Tb and UA are constants and e ∼ N(0, σ2) is the combined observation and systems noise.

Expanding Equation (4.5) such that

Φh = UATb − UATe + e , (4.6)

it can be seen that the model can be estimated as a first-order linear model with UA as the slope and
UATb as the intercept.

In the early literature on energy signatures— e.g. [63]— linear models, such as the one just presented,
were suggested due to limited data and computational power. However, the linearmodels seem still to be
dominating the energy signatures. This is seen in someof themore recent studies from2013 to 2020 [65–
69]. Furthermore, the energy signature models are often treated as univariate models as Equation (4.5).
Other times, multivariate models with solar irradiation as a second explanatory variable are used.

Equation (4.5) is of course only valid for periods with heating demand. For periods without heating
demand the building enters another regime. The regime is typically treated as a linear relation between
heat consumption and the outdoor temperature. In ASHRAE Guideline 14-2002 – Measurement of
Energy and Demand Savings different model proposals are listed for buildings with different kinds of
heating, cooling, and heat recovery systems [70]. For buildings without cooling and heat recovery, the
second regime can be modelled as a constant Φ0 corresponding to the base heat use related to e.g. hot
water consumption. The full model then becomes

Φh =

{
UA (Tb − Te) + e for Te ≤ Tb

Φ0 + e otherwise .
(4.7)

By neglecting substantial heat flows such as infiltration and solar gain as in (4.7), the estimatesmight end
upbeingbiased as stated in [63] and shown inPaperC. For example, particularlywindy and coldweather
results in higher estimated UA values than cold and less windy weather. This is seen in the left plot in
Figure 4.2. Likewise, a sunny period around the transition point of the two regimes in Equation (4.7)
will result in an overestimated UA value as well. This is illustrated in the right plot in Figure 4.2.

Φh

Ta

Windy days

Ta

Tb

Sunny days

Figure 4.2: Illustration of energy signature bias. The left plot shows how the slope of the linear heat demand formulation
(i.e. the UA value) will increase if particularly windy and cold days occur (red dots). In the plot to the right, the UA value is
increasing as well, but this time due to particularly sunny days (red dots) which will a reduced the heat demand.
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4.2 Dynamical Methods
Dynamical models are used to describe the transient behaviour of dynamical systems, such as buildings.
This kind of models does, therefore, not assume or rely on steady-state or quasi-stationary conditions.
Actually, they require that the data contains a sufficient amount of variation, for the dynamics to be
practically identifiable [71].

As a result of applying dynamical models on time series building data, time constants and heat capacities
can be estimated, as well as steady-state thermal performance parameters such as heat loss coefficients.

In the the following sections two types of dynamicalmodels are presented. The linear auto-regressive and
moving-average models (i.e. the ARX and the ARMAX models) and the stochastic state-space models
described by stochastic differential equations.

For introduction to both classes ofmodels the reader is referred to the report of IEA-EBCAnnex 58, IEA-
EBC Annex 58 – Reliable Building Energy Performance Characterisation Based on Full Scale Dynamic
Measurements. Report of Subtask 3, Part 2: Thermal Performance Characterisation Using Time Series
Data – Statistical Guidelines [59].

More detailed description of linear auto-regressivemodels can be found in the bookTime Series Analysis
by Henrik Madsen [72], and for in-depth literature on stochastic differential equations and non-linear
modelling the reader is referred toModellingNon-linear andNon-stationaryTime SeriesbyHenrikMad-
sen, Jan Holst and Erik Lindström [71].

4.2.1 Auto-regressive Models
A subcategory of the linear regressionmodels is the linear auto-regressivemodels— theARmodels. The
ARmodel simply regresses on lagged (i.e. previous) values of the independent variable Yt, such that

Yt + ϕ1Yt−1 + · · ·+ ϕpYt−p = et , (4.8)

where t is the discrete time, ϕ1 to ϕp are the model parameters, and p is the order of the ARmodel. The
model in Equation (4.8) is consequently called the AR(p) model.

Twoextensions of theARmodel are theARXmodel (auto-regressivemodelswith exogenous inputs) and
the ARMAXmodel (auto-regressive moving-average models with exogenous inputs). Other variations
of the auto-regressive models exist as well, but will not be discussed here.

The ARX and ARMAXmodels are different from the normal linear regression models mentioned pre-
viously, by their capabilities of describing a system’s dynamics. They do so by regressing on lagged input
variables and hence describe the response to a change in the inputs.

The family of auto-regressive models is typically linear, discrete-time models, which are useful for mod-
elling many weakly stationary stochastic processes. I.e. processes with time-invariant mean and variance
[72]. Since themodels are discrete-timemodels the parameters depend on the time step in the data. Con-
sequently, it is required that the time steps in the time series are equidistant.

Modelling either the heat demand or the indoor temperature of a building, the data are typically not
stationarywhen looking at the yearly variation. Instead, a seasonal trend is seen. Because themodels need
to be excited as much as possible to be identifiable, periods with high temperature differences between
inside and outside are typically used for model estimation. This naturally shortens the data period to
maybe a few weeks or months during the winter, and the stationarity requirement is fulfilled.

22 Data-drivenMethods for Reliable Energy Performance Characterisation of Occupied Buildings



ARX
The AR(p) model can easily be extended to include one or more exogenous inputs, u, as seen in Equa-
tion (4.9).

Yt + ϕ1Yt−1 + · · ·+ ϕpYt−p = ω0ut + ω1ut−1 + · · ·+ ωrut−r + et , (4.9)

where ϕ and ω are the model parameters, and r is the lag of the inputs.

Introducing the backshift operatorB, where

Bk Xt = Xt−k , (4.10)

withX as a random variable, and k as the lag, Equation (4.9) can be now be written as

(1 + ϕ1B + · · ·+ ϕpB
p)Yt = (ω0 + ω1B + · · ·+ ωrB

r)ut + et . (4.11)

For further simplification, two backshift polynomials inB are introduced:

ϕ(B) = (1 + ϕ1B + · · ·+ ϕpB
p) , (4.12)

ω(B) = (ω0 + ω1B + · · ·+ ωrB
r) . (4.13)

The ARXmodel can now be written as

ϕ(B)Yt = ω(B)ut + et . (4.14)

ARMAX
Whereas the ARX model only relies on correlations between current and present inputs (ut) and ob-
servations (Yt), the ARMAXmodel has an additional moving average (MA) term, which describes the
auto-correlation in the model residuals. The ARMAXmodel is therefore

(1 + ϕ1B + · · ·+ ϕpB
p)Yt =(ω0 + ω1B + · · ·+ ωrB

r)ut + (1 + θ1B + · · ·+ θqB
q)et ,

(4.15)

where the θ1 to θq are the parameters of the lagged model errors.

Introducing the third backshift polynomial inB,

θ(B) = (1 + θ1B + · · ·+ θqB
q) , (4.16)

the ARMAXmodel can be written as

ϕ(B)Yt = ω(B)ut + θ(B)et , (4.17)

which on transfer function form is

Yt =
ω(B)

ϕ(B)︸ ︷︷ ︸
H(B)

ut +
θ(B)

ϕ(B)
et . (4.18)

In Equation (4.18), H(B) is the transfer function of the inputs variables, which will later be used for
calculation of the time constants of the system.
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Least Squares and Prediction Error Method Estimation
One possible way of estimating the ARX models is by the least squares (LS) method [59, 72]. It has a
closed-form solution and is easy to calculate. If β is the full set of parameters, the estimate β̂ is

β̂ = argmin
β

1

N

N∑
i=1

ei(β)
2 , (4.19)

whereN is the number of observations.

The ARMAXmodel, on the other hand, relies on the model errors. That means that the output at time
t is dependent on themodel error at time t−1 to t−q. However, themodel errors are only known after
predictions have been made, and the predictions can only be done when the errors are known.

As the Box-Jenkins approach of estimating transfer function models does not apply for most multiple
input models, the recursive prediction error method can be used instead. A description of the method is
given in [72].

It should be noticed that different software use different methods for fitting ARMAX models. For ex-
ample do the arima function in baseR [73], as well as theArima and auto.arima from the forecast pack-
age [74] in R, fit a linear regression model with ARIMA errors. The exact implications on the model
estimates are unknown, but it is suspected that the interpretability, which will further described in Sec-
tion 4.2.2, will be lost.

If a custom implementation of the ARMAX estimation process is not done, there might be other inter-
esting packages inR. E.g. theMultivariate ARIMAandARIMAXAnalysis (marima) package and the
Time Series Analysis (TSA) package [75, 76].

Alternatively, other software can be used. E.g. Matlab and the System Identification Toolbox which rely
on the prediction error method [77, 78].

Physical Interpretation
The family of auto-regressive models is often used to model various types of dynamical systems, such as
physical, biological and financial systems. However, in its pure form it may be a good model for predic-
tions, but it is seemingly a black-box model which can be hard to interpret physically.

In e.g. [79–81] the interpretability of ARX and ARMAX models applied on building data has been
shown. It is done by setting up a dynamic state-space model in continuous time and showing the link
between that and the discrete-time ARX or ARMAXmodel.

As in the example from [80], it is shown that the following dynamic continuous-time model can be
rewritten as an ARMAXmodel:

C1
dT1

dt
=

Te − T1

R1
+

T2 − T1

R2
+

dW1

dt
, (4.20)

C2
dT2

dt
=

T1 − T2

R1
+

Ti − T2

R2
+

dW2

dt
, (4.21)

Φh = UA(Ti − T2)− gA I + e , (4.22)

where C is the heat capacities, R is the thermal resistances, Φh is the space heating, UA is the heat loss
coefficient, gA is the solar transmittance, and I is the solar irradiation. Furthermore, Ti and Te are the
indoor and outdoor temperatures, while T1 and T2 are temperature states in the separation layer (e.g. a
building envelope) between inside and outside. Finally,W is theWiener processes, e ∼ N(0, σ2) is the
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independent and identically distributed (i.i.d.) white noise with zero mean and variance σ2, and t is the
time.

It was shown that the system in Equation (4.20)–(4.22) can be expressed as the ARMAX model with
heating as output:

ϕ(B)Φh,t = ω1(B)Te,t + ω2(B)Ti,t + ω3(B)It + θ(B)et , (4.23)

or with the indoor temperature as output:

ϕ(B)Ti,t = ω1(B)Te,t + ω2(B)Φh,t + ω3(B)It + θ(B)et , (4.24)

where the number of temperature states in the continuous-time state-space model corresponds to the
number of lags in the discreteARMAXmodel. This further translates into the number of time constants
of the system.

To obtain the steady-state parameters of the system like the heat loss coefficient UA and the solar trans-
mittance gA, Equation (4.23) and (4.24) can be brought on steady-state form by setting B = 1, and
comparing it to the steady-state heat balance

Φh = UA(Ti − Te)− gA Ig + e . (4.25)

Remembering that Bk Xt = Xt−k it can be seen that for B = 1, the steady-state, where inputs and
outputs are constant, is reached.

As this procedure results in two estimates of the heat loss coefficient, it is suggested in [80] that the two
values are weighted such that the variance of the resulting HLC has the least possible variance. The
variance of the individual parameters can be established by error propagation— see e.g. [59].

Other important parameters which describe the dynamics of a dynamical system are the time constants.
The time constant for a first-order system expresses the time it takes for the system to reach approximately
63 % of the ultimate new state after the system has been exposed to a step-change in the inputs.

In the continuous-time models, the time constants are found by multiplication of resistances and heat
capacities. However, in the discrete-time models like the ARMAX models, the time constants, τ , are
determined by the poles of the system— i.e. the roots of the denominator ofH(B) in Equation (4.18).
The number of lagged values of the dependent variable p is therefore equal to the maximum number of
time constants [72].

τi =
1

ln |polei|
, ∀ i ∈ [1, p]. (4.26)

ARX and ARMAXModels Used in Practice
Single-output ARX models have been compared with multi-output ARX models with significant im-
provements in [82]. Based on several tests on a test cell in real weather conditions across different peri-
ods, it is stated that the multi-output ARX model showed significant improvements. Both in terms of
consistent estimations of the U value and in good agreement with other estimation methods tested.

Another study on several different data-driven models tested on both simulated data and data from a
test cell at KU Leuven, Belgium, showed all good results during winter periods with high heat demands.
Both quasi-stationary and dynamic models (the Anderlind’s regression method, an ARX model, and a
stochastic differential equationmodel) were tested. By testing the models on summer data, the dynamic
models outperformed the quasi-stationary models, but performed worse on winter data [51].
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In a third studypresented in [83], anARXmodelwas derived froma thermal resistance-capacity network.
Anexperimentwas conductedon a test cell at PlataformaSolar deAlmeria in south-east Spain. The tested
wall was a homogeneous lightweightwall withoutwindows. The estimated heat loss, solar transmittance,
and heat capacity were rather consistent for the winter data, but less for the summer data.

In [58], ARXmodels for thermal parameter identification were tested on a British occupied apartment.
The results obtained with a rather simple ARX model using only total heat consumption, indoor and
outdoor temperature showed that the confidence interval and the estimate of the heat loss coefficient
stabilised for measurement periods of around 16 weeks. Slightly more complex models reduced the con-
vergence time by approximately three weeks.

The same study showed that the choices made by the modeller can result in variations of the estimated
heat loss of up to 90%. Alone by using either one of the two temperatures measured (the temperature
measured in the living room)or the volume-weightedmean temperature of the two sensors, thedifference
on the estimated heat loss coefficient was close to 70%.

Both ARX and ARMAXmodels have been tested in the International Energy Agency, Energy in Build-
ings and Communities Programme (IEA-EBC), IEA-EBC Annex 58: Reliable Building Energy Perfor-
mance Characterisation Based on Full-scale Dynamic Measurements as well [59, 84, 85]. The methods
are still investigated in the current IEA-EBC Annex 71: Building Energy Performance Assessment Based
on In-situMeasurements [86].

As the ARX models are typically estimated by means of the least squares method. It is clear that the
optimisation of the model parameters is done by minimising the one-step model errors.

In [87] a different estimation technique for ARX models has been tested on an 80m2 apartment in
Berkeley, California. While ARXmodels might be good for one-step predictions, they are typically not
as good for multi-step predictions. To overcome this, they formulated an ARX model as a neural net-
work and fitted it by applying backward error propagation of multiple prediction horizons. That way
the estimated parameters are optimised to perform the best on several prediction horizons, rather than
on one-step predictions alone. The aim of the article was, however, focused on control, rather than pa-
rameter estimation.

Yet another study has implemented fractional-order ARX models to model the thermal dynamics of a
simulated test house [88]. The fractional-order models differ from typical integer-order models by allow-
ing the model order to be any number larger than zero.

Naturally, it is difficult to understand themeaning and implication of fractional-ordermodels. However,
one of the key benefits is stated to be that the model has extended memory compared to integer-order
models. Consequently, as shown in [88] themodel order canbe significantly reducedwhile still capturing
the dynamics of the system.

Even though the work of the article focuses on control and not physical parameter identification, the
method has interesting and potentially useful features regarding the random nature of occupants’ be-
haviour. The exact use of fractional-order models with the aim of characterising thermal properties of
buildings is not clear. However, if the models can be physically interpreted, it might be useful for mod-
elling systems with random disturbances like occupants’ behaviour.

4.2.2 ARX and ARMAXModels Continued – Implications of the MA Term
As mentioned earlier, the data-driven models are simplified representations of the physical system one
wants to model. It is often assumed that two or three time constants are adequate to describe a building
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treated as a lumped resistance-capacity (RC) model— see e.g. Section 4.2.3.

However, several of the studiesmentioned previously in Section 4.2.1 show that exceptionally high num-
ber of lags were needed to describe the dynamics of buildings. In the most extreme case 100 lags of the
inputs were needed to achieve similar accuracy as a 6th-order FARX model [88]. In [87], ARX models
with up to 100 lags in the inputs were tested as well. It was, however, stated that no significant improve-
ments were observed for more than a 30 lags.

It should be noted that bothmethods were intended for prediction rather than identification of physical
parameters. However, both studies extended their models by including an increasing number of lagged
input variables, while keeping the order of the output polynomial at one. As stated in Section 4.2.1, this
means that the building in both cases was modelled with a single time constant. Furthermore, as the
transfer function H(B) in Equation (4.18) is improper, the systems in both studies are non-causal—
future events influence the past [89].

Despite the non-causal systems just mentioned, other studies find similar tendencies on causal systems
used for system identification of buildings. In [90] the order of theARXoutput polynomial were found
to be between 30 and 46, and in [91] the order of the output polynomial were found to be between 33
and 87.

Although someof the high-ordermodels found in the literature are not causal, the conclusion is the same.
ARXmodels seem to require higher order than what is physically sensible.

The reason for the high-order ARX models is most likely due to the fact that the stochastic process
is more similar to an ARMAX process, rather than an ARX process. As invertible ARMAX models
can be reformulated as infinite-order ARX models, it is not surprising that high-order ARX models
are obtained if the underlying process is more similar to an ARMAX process. The invertible ARMAX
model

ϕ(B)Yt = ω(B)ut + θ(B)et︸ ︷︷ ︸
ARMAXmodel

, (4.27)

can be described as

θ−1(B)ϕ(B)Yt = θ−1(B)ω(B)ut + et︸ ︷︷ ︸
ARXmodel of infinite-order

, (4.28)

where θ−1(B) is an infinite-order polynomial as per definition of invertible linear processes [72].

The question is therefore: Is it reasonable to believe that thermal dynamics are described by anARMAX
process rather than an ARX process?

The ARXModel with Observation Noise
In [72] (page 300-301) it is shown that the noise process of an observed randomwalk on state-space form
is an MA(1) process. In the same manner, the ARX model with observation noise can be shown to be
analogue to an ARMAXmodel.

First the ARXmodel with observation noise on state-space form is defined:

Yt = ϕYt−1 + ωut + ηt , (4.29)

Y ∗
t = Yt + ξt , (4.30)
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where Yt is the state variable at time t, Y ∗
t is the observation of Yt, ut is an input, ϕ and ω are the model

parameters, and {ηt} and {ξt} is white noise with variance σ2
η and σ2

ξ , respectively.

By substitution, Equation (4.29) and (4.30) can be formulated as

Y ∗
t − ϕY ∗

t−1 − ωut = ηt + ξt − ϕξt−1 . (4.31)

The left-hand side of Equation (4.31) is now expressed as a function of the system and observation noise.
To determine which process it is, the auto-correlation function ρ can be calculated.

By definition the auto-correlation function of stationary processes is:

ρ(k) =
γ(k)

γ(0)
=

γ(k)

σ2
, (4.32)

where γ(k) is the auto-covariance function of a stochastic process and its k times lagged values. Similarly,
ρ(k) is the auto-correlation for lag k [72].

Utilising the fact that the noise processes are white, and therefore uncorrelated in time, the covariance
for lag k = 0 is calculated as:

γ(0) = Cov(ηt + ξt − ϕξt−1, ηt + ξt − ϕξt−1)

= Cov(ηt, ηt) + Cov(ξt, ξt) + Cov(−ϕξt,−ϕξt)

= Var(ηt) + Var(ξt) + ϕ2 Var(ξt)

= σ2
η + σ2

ξ (1 + ϕ2) .

(4.33)

In similar manner the covariance for k = 1 is calculated:

γ(1) = Cov(ηt + ξt − ϕξt−1, ηt−1 + ξt−1 − ϕξt−2)

= Cov(−ϕξt−1, ξt−1)

= −ϕVar(ξt−1)

= −ϕσ2
ξ .

(4.34)

Finally, for k > 1 the auto-covariance function becomes zero. The auto-correlation function, ρ(k) =
γ(k)/γ(0), can therefore be written as

ρ(k) =


1 k = 0

− ϕσ2
ξ

σ2
η+σ2

ξ (1+ϕ2)
|k| = 1

0 |k| > 1 .

(4.35)

The auto-correlation functionof the right-hand side ofEquation (4.31) is equivalent to anMA(1) process
[72]. Hence, the model in Equation (4.31) becomes

Y ∗
t − ϕY ∗

t−1 − ωut = et + θet−1 , (4.36)

which clearly is an ARMAXmodel.

Doing the same for a state-space model of an nth-order ARX model, one will see that the noise process
can be formulated as anMA(n) process.

It can be concluded that the ARX model with observation noise on state-space corresponds to an AR-
MAX form, where the combination of state and observations noise results in anMA term.
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Figure 4.3: Realisation of theARMA(2, 1) process defined in Equation (4.37) (first plot), the residuals and the auto-correlation
functions of the estimated ARMA and ARmodels (second and third plot).

Estimation of ARX and ARMAXmodels on Simulation Data
To demonstrate that an ARMAX can be modelled as the high-order ARX model, a small simulation
study has been made. For simplicity, the focus is here on auto-regressive models without exogenous
input. I.e. AR and ARMAmodels.

First an ARMA(2, 1) process is defined as in Equation (4.37), and a simulated realisation with 250 time
steps is made. The AR parameters are taken from one of the models inPaper D, and theMA parameter
is selected such that the MA term is invertible. For MA(1) processes that is for |θ1| < 1, where θ1 is
the coefficient in the backshift polynomial found in Equation (4.16). The process is shown in Figure 4.3
(top).

(1− 1.768B + 0.769B2)Yt = (1 + 0.9B)et (4.37)

The best AR and ARMA model describing the process in Equation (4.37) is found by means of the
Bayesian information criterion (BIC) and theAkaike information criterion (AIC) stated inEquation (4.41)
and Equation (4.42). The model selection is done automatically with use of theR package forecast [74].

The best model fit were an ARMA(2, 1) model, with the estimated parameters and the standard error
in the parenthesis: ϕ̂1 = 1.790 (0.038), ϕ̂2 = −0.797 (0.038), and θ̂1 = 0.905 (0.033). The same

Data-drivenMethods for Reliable Energy Performance Characterisation of Occupied Buildings 29



model were obtained when both the AIC and BIC selection criterion were used.

Using the same approach to find the best ARmodel which describes the ARMA process, a significantly
higher number of parameters were needed. The best possible model found were an AR(9) model when
the AIC was used for model selection, and an AR(6) model when the BIC was used.

Both the AIC and BICwere reduced by fitting an ARMAmodel instead of an ARmodel to the process
in Equation (4.37) as shown in Table 4.1.

Table 4.1: Akaike and Bayesian information criterion of best fit of the model in Equation (4.37).

Model order
Model AIC BIC p q

AR −416.5 −387.6 9 / 6 0

ARMA −426.8 −412.7 2 1

The residuals and the auto-correlation functions of the residuals are shown forboth the estimatedARMA
and theARmodel in Figure 4.3 (second and third plot). In both cases, there is no sign of auto-correlated
residuals.

The demonstration shows that it is possible to model an ARMA process with a high-order AR model.
In the same manner, ARMAX processes can be modelled as high-order ARXmodels.

Applying ARX models on building data may, therefore, result in more estimated time constants than
anticipated and found in the literature on lumped RC models. Applying an ARMAX model will in
contrast to this, limit the number of estimated time constants, and instead rely on the fact that the noise
can be modelled with anMA term.

Estimation of ARX and ARMAXmodels on Building Data
Testing the same hypothesis that ARMAXmodels are capable of describing building dynamics by using
fewermodel parameters, can be tested on actual building data. In the following, three data sets from two
different buildings are used for estimating of several different ARX andARMAXmodels to validate the
hypothesis further.

The general model which is tested, is

ϕ(B)Ti,t = ω(B)Ut + θ(B)et , (4.38)

where

U⊤
t =

[
Te,t Φh,t Ig,t

]
, (4.39)

ω(B) =

ω1(B) 0 0

0 ω2(B) 0

0 0 ω3(B)

 . (4.40)

The order of the polynomials ω1(B), ω2(B) and ω3(B) is varied between 1 and 5 (both included), and
the order of ϕ(B) and θ(B) is varies from 0 to 5. The ARX model is obtained for θ(B) of order zero
such that θ(B)et becomes et.

Omitting the combinations where ω1(B) to ω3(B), and θ(B) is higher than the output polynomial
ϕ(B), gives a total number of 1204 combinations.
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The three data sets tested are from an occupied house inGainsborough, England, and a test facility house
with simulated occupants at the Fraunhofer Institute in Holzkirchen, Germany. Buildings and data de-
scriptions can be found in [92, 93]. Two different data sets (i.e. two different periods) from the house
in Gainsborough has been tested as well as one data set form the test house in Holzkirchen.

During any model selection process a certain measure of the model accuracy is used to determine if one
model is better than another. A few examples are the likelihood ratio test described in Section 4.2.3, the
Akaike information criterion (AIC), or Bayesian information criterion (BIC) used earlier. Common for
all the methods is that they favour the model accuracy and penalise on the number of model parameters
to avoid overfitting. For example, the AIC penalise two times the number of parameters, and the BIC
log(n) times the number of parameters, wheren is the number of observation used formodel estimation.

AIC = 2k − 2 log(L) , (4.41)

BIC = log(n)k − 2 log(L) , (4.42)

where k is the number of parameters,n is the number of observations, andL is themaximum likelihood
of the model.

In a situation without penalisation on the number of parameters, the largest model would be preferred,
as it will fit the training data better. However, the estimatedmodel will be prone to overfitting. In amore
general formulation of the information criteria of Equation (4.41) and (4.42), where 2k and log(n)k is
generalised as PF · k,

IC = PF k − 2 log(L) , (4.43)

that would correspond to PF = 0.

In the first row of plots in Figure 4.4 the black line indicates the number of parameters included in the
best possible ARX model with different values of the penalties factor PF in Equation (4.43). Without
penalising on the number of parameters, theARXmodel utilises the total number of possible parameters
(20). Increasing the penalty factor, reduces the number of parameters. Eventually (but not shown in the
figure) the number of parameters would reach 4, which is the minimum for the given model structure.

After the best ARXmodel was found for each level of PF, the smallest (in terms of the total number of
parameters) ARMAX model which performed at least as good as the ARX model was found. This is
indicated with the red line in the upper plots of Figure 4.4.

In the second row of plots, the corresponding information criteria calculated as in Equation (4.43) are
shown. For reference, the dots on the lines indicates the Akaike information criterion (left) and the
Bayesian information criterion (right).

The general trend in the upper plots is that the number of parameters can be significantly reduced by
applying an ARMAXmodel instead of an ARXmodel when the penalty factor is low.

On the other hand, hard penalisation on the number ofmodel parameters tends tomake theARXmodel
preferable, if the goal is to keep the number of model parameters as small as possible. The potential
dynamics in the model residuals are simply too costly to model with anMA term.

The plot shows for many cases, that the model can be reduced and thereby made more general by in-
cluding anMA term to the ARXmodel. This means that what otherwise would have been described by
several parameters in the ARXmodel, can be described by a simpler MA term. Provided a good model
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Figure 4.4: Comparison of the number of parameters (top) and the information criterion (bottom) for different levels of pa-
rameter penalisation when using ARX and ARMAXmodel for dynamical building modelling.

structure, the ARMAX model will make the AR term describe the systematic thermal dynamics, and
the MA part describe the model and observation noise.

As the AIC penalise less on the number parameters (in practically any case) than the BIC, the selected
ARXmodel is more likely to overfit. That means that it describes the noise in the data, which cannot be
generalised to new observations.

On the other hand, by selecting the ARX model based on the BIC, one might end up with a model
which describe the general building dynamics better. However, as the observation noise and potentially
unmodelled effect will result in correlated errors as seen earlier, the ARXmodel which describes the true
dynamicswill show signs of auto-correlated residuals. Hence, it ismight be difficult to validate themodel
by classical residual analysis methods.

One possible solution is, therefore, to use an ARMAXmodel instead of an ARXmodel, and select the
best model based on cross-validation, such that a good balance between model bias (underfitting) and
variance (overfitting) is obtained.

In Figure 4.5 the estimated heat loss coefficients obtained by the best ARX and ARMAX model are
plotted as a function of the penalty factor PF. From the figure, there does not seems to be a difference in
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Figure 4.5: Estimated heat loss coefficients (HLC) from two different buildings when using ARX and ARMAXmodels.

the width of the 95% confidence intervals for the individual estimated models. However, the estimated
HLC from the ARMAXmodel (red line) is consistently higher than the estimatedHLC obtained from
the ARXmodel (black line).

As seen for the two right-most plots in Figure 4.5 the estimatedHLC for the same house on two different
periods gives similar results. However, it was expected that the match would be better by applying an
ARMAXmodel rather than an ARXmodels, as the disturbances were expected to be handled better.

Other methods, such as omitting data with high levels of disturbances (e.g. occupied periods), might be
useful to obtain more consistent estimates. This is further discussed in Paper D and in Section 4.4.

4.2.3 Continuous-Time State-Space Models
In the previously described ARX and ARMAXmodels, the parameters are dependent on the sampling
time. Furthermore, the combined system and observation noise is assumed Gaussian and treated under
a single term e. In the state-space models, the parameters can have direct physical meaning and they are
invariant to the sampling time. Hence, themodels can also be estimated onnon-equidistant observations
contrary to theARXandARMAXmodels. Furthermore, observation and systemnoise canbe estimated
separately.

The state-space models consist of one or more states which describe the main evolution of the system,
and for the stochastic state-space models, the system and observation uncertainty is included as well.

The state equations in continuous time are often described by stochastic differential equations (SDEs),
which will be explained in the following section. The observation equation is briefly described after-
wards.
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Stochastic Differential Equations
Stochastic differential equations are the natural extension of ordinary differential equations (ODEs). In
general any SDE can be formulated as

dXt = f(Xt, Ut, t; θ)dt︸ ︷︷ ︸
Drift

+σ(Xt, Ut, t; θ)dWt︸ ︷︷ ︸
Diffusion

, (4.44)

where Xt is the state variable as function of time t with initial condition X0. Ut is a vector of deter-
ministic inputs, and θ is the model parameters. Finally,Wt is the standard Wiener process representing
the system noise. A detailed introduction to stochastic differential equations and its applications can be
found in for example [71, 94, 95].

The state variableXt in Equation (4.44) can contain multiple states. The number of the states, is the or-
der of the state-spacemodel. One example of a second-order state-spacemodel is given inEquation (4.20)
to Equation (4.22).

Within thebuildingmodelling framework, the diffusion term in (4.44) is typically treated as independent
of the stochastic state variablesXt. Furthermore, the dependence on the inputs Ut is rarely seen as well.
It can, however, be utilised to introduce different level of system uncertainties by for example including
information on estimated occupancy status as found in Paper A.

The evolution of the states of a dynamical systemw.r.t. time is separated into two distinct terms, namely
the drift and the diffusion term as shown in (4.44). Parametric, non-parametric or semi-parametric as
well as linear or non-linear functions can be used to describe both the drift and diffusion term. This
makes the SDEs capable of describing complex dynamical systems while handling measurement noise
and process noise separately. The latter being model approximations and noise originating from un-
known disturbances to the system [95]. The diffusion term might as well describe the noise in the oth-
erwise deterministic inputsUt, as long as it is approximately Gaussian.

Observation Equation
The observation equation related to the state-space model is in its general form written as

Yk = g(Xtk , Utk , tk; θ) + etk , (4.45)

whereYk represents thediscrete-timeobservationsof themodel output,which are linkedwith the continuous-
time state equation through the linear or non-linear function g(Xtk , Utk , tk; θ). The subscript tk with
k = 0, 1, . . . , N represents the sampling instants and etk ∼ N(0, σ2) represents the measurement
noise. I.e. a zero mean white noise process. Generally, for all t and tk, mutual independence is assumed
amongst the stochastic entitiesXt,Wt and etk .

Maximum Likelihood Estimation
One approach to estimate the model parameters of stochastic differential equations is to use maximum
likelihood estimation (MLE). The advantage of theMLEmethod over e.g. the least squares (LS)method
is that this method allows for estimating the parameters related to the noise term as well. Here theMLE
method is briefly outlined, but further details can be found in [96].

Given a sequence of measurementsYN = {Y1, Y2, · · · , YN}, the likelihood function is the joint prob-
ability density of all the data but considered as a function of the unknown parameters. The likelihood
function can therefore be written as the product of the one-step ahead conditional densities

L(θ|YN ,UN ) =
N∏
k=1

p(Yk|θ,Yk−1,Uk) p(X0|θ), (4.46)
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whereθ is the set of parameters,YN andUN are the sets of observations and inputs, andp(Yk|θ,Yk−1,Uk)

is the probability of observing Yk given the previous observations and inputs. This is the so-called exact
likelihood function which contains a parametrisation of the density associated with the initial stateX0.

Since the systems are assumed driven by the Wiener process, which has Gaussian increments, the one-
step ahead density for linear systems is alsoGaussian. Formost non-linear systems this is still a reasonable
assumption, and can be checked – see e.g. [97].

In the Gaussian case the conditional density is completely characterised by the conditional mean (the
prediction) and the conditional covariance. By introducing the one-step prediction error (also called the
innovation error or residuals)

ek|k−1 = Yk − Ŷk|k−1, (4.47)

and the associated covariance,Rk|k−1 =Var(Yk|Yk−1, θ) the likelihood function can be written as

L(θ|YN ,UN ) = p(YN |UN , θ) (4.48)

=

(
N∏
k=1

exp
(
− 1

2e
⊤
k R

−1
k|k−1ek

)
√
det
(
Rk|k−1

) (√
2π
)L
)
p(X0|θ) , (4.49)

where L is the dimension of the observation space.

Using logarithm we obtain the log-likelihood function

l(θ|YN ,UN ) = −1

2

N∑
k=1

(
e⊤k R

−1
k|k−1ek + log

(
det
(
Rk|k−1

)
(2π)

L
2

))
+ log(p(X0|θ)) .

The parameter estimates are found by maximising the log-likelihood function

θ̂ = argmax
θ

{
l(θ|YN ,UN )

}
. (4.50)

The corresponding value of the log-likelihood is the observed maximum log-likelihood value given the
available data set.

For linear models the conditional mean and covariance are calculated using an ordinary Kalman filter,
while for nonlinear models an extended Kalman filter is used. See [96] for further details.

Model Selection with Likelihood Ratio Test
Given two nested models—i.e. two competing models where the smaller model is contained in the
larger—the increased goodness of fit for the model extension can be tested with the likelihood ratio test
(LRT).

The likelihood ratio is for a given set of observationsYN and model inputs UN defined as

λ(YN ,UN ) =
supθ∈Θ0

L(θ;YN ,UN )

supθ∈Θ L(θ;YN ,UN )
, (4.51)

whereΘ0 is the parameter space for the null model (i.e. the smaller model) andΘ is the parameter space
for the alternative model (i.e. the larger model) [98].

For small values of λ the null hypothesis is rejected, hence the extendedmodel is accepted. The evidence
against the null model is measured by the p-value, which can be obtained from Wilk’s likelihood ratio
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test as two times the negative log-likelihood ratio converges to the chi-squared distribution with k −m

degrees-of-freedoms:
− 2 logλ(YN ,UN ) → χ2(k −m) , (4.52)

where χ2(k−m) is the chi-squared distribution with k−m degrees-of-freedoms, and k andm are the
number of parameters in the extended and the null model, respectively [99].

For unnestedmodels, other selectionmethods need to be applied. E.g. the Akaike information criterion
(AIC) or the Bayesian information criterion (BIC) stated in Equation (4.41) and (4.42), respectively. For
situations with plenty of data, cross-validation techniques can also be used.

State-space Models Used in Practice
The continuous-time state-spacemodels havebeenused to characterise buildingdynamics formany years.
In [60] a procedure for modelling and model selection is presented. In the study, which was performed
on unoccupied buildings, it was found that a 4th-order model was sufficient to describe the thermal
dynamics. The estimated thermal resistances were, however, similar for all models, and the total effective
heat capacity was of similar magnitude for 3rd to 5th-order models.

In [100] a grey-boxmodel of 2nd-order was found adequate to describe the thermal dynamics. The same
article also lists several other studies (see [101–103])where the order of the applied grey-boxmodels varies
from first to second-order models. All studies were conducted on unoccupied buildings or simulated
data. Another study found that fourth to fifth-order models were optimal for describing the thermal
dynamics of a building [104].

The variation in the number of states used to describe the thermal dynamics can bemany. However, two,
three or eventually four states seem to be sufficient for most cases.

As stated in [100], most studies found in the literature is carried out on either simulation data or unoc-
cupied buildings. However, a recent study found in [105], utilise dynamical lumped thermal capacity
models combined with Bayesian methods to identify thermal characteristics of occupied buildings. The
models have been tested on two different occupied houses. A special focus in [105] been on modelling
the solar gain by distinguishing between diffuse and direct solar irradiation, and using the irradiation in
the plane of the building facades.

By training several models on subsets of the data, the best performing grey-box model was found. This
model showed that the estimated heat loss coefficient varied as little as 15 % for the different sub data sets.
This includes data sets of only 5 to 10 days duration in the summer. This is assumed to be possible only
due to well modelled solar gains which are amain driving force for the thermal dynamics during a period
with low temperature differences between inside and outside.

An alternative approach to dynamical solar gain modelling in buildings (and thermal energy systems in
general) is given in Paper B. No information on the building is given. Instead, the daily variation of the
solar transmittance is estimated directly from data by use of semi-parametric methods— i.e. B-splines.

4.3 Other Model Types
Allmethodsmentioned until nowhave one thing in common. They are all used for system identification.
That means, that the aim is to identify key parameters which describe the thermal building performance
such as the heat loss coefficient, time constants, solar transmittance etc., and eventually use themodel for
prediction. Recently thismachine learningpracticehas alsobeennamed explainable artificial intelligence
(XAI) [106–109] or physics enhanced artificial intelligence (PEAI) [110].
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Other machine learning techniques under the “classical” term artificial intelligence (AI) has also been
applied on buildings with various goals. Common for most of them is, however, that they lack inter-
pretability. That means that the models cannot be explained in a physical way and therefore categorised
as black-box models. These methods are more often used for prediction, control and clustering. Conse-
quently they are not relevant for quantification of thermal performance for the time being. A thorough
review of black-box machine learning techniques can be found in [111].

4.4 Avoiding the Occupants – Selective Data Use
For the dynamical models especially, the data can contain significant amounts of dynamics which are
not related to the actual building’s thermal characteristics—but rather the occupants’ behaviour and
interactionwith the building. For example, a temperature decay related to heat transmission through the
building envelope,will not benoticeably different froma temperature decay related to awindowopening.
Both scenarios will result in some sort of decay, but with different decay rates. Estimating a rather simple
model where the window openings are not included, the temperature decays due to window openings
will affect the estimated time constants and the heat loss coefficient.

Fitting a model on data obtained from occupied buildings, will undoubtedly affect the estimated param-
eters. Furthermore, estimating the samemodel on the same house, but during different periodswillmost
likely results in different results as it also was found in Section 4.2.2.

One way to reduce the occupants’ effect on the estimated model, is to be selective about the data for
model estimation.

A natural modelling approach to tackle the disturbances caused by the occupants would be to focus
on measurements during night-time. For most dwellings, it would result in fewer disturbances as the
occupants are asleep. Another benefit— if information about solar transmittance is not of interest— is
that solar gains can be disregarded, which may be beneficial due to its complex nature.

A small investigation on the accuracy of the estimated heat loss coefficient has beenmade on an occupied
house in England, Gainsborough, as part of the IEA-EBC Annex 71 [86].

The measurements were obtained between December 1 and December 10, 2012, from a two-story apart-
ment of 67m2. Tenminutes samples of indoor and outdoor temperature, heat consumption, electricity
consumption, and onsite photovoltaic (PV) production as a substitution for solar irradiation were used.
The indoor temperature was calculated as the space volume-weighted mean temperature in each time
step, based on the temperatures measured in the living room and the bedroom.

The measured heat consumption is a combination of heat consumption for space heating and domestic
hot water (DHW) production. In this small study, several derived heat consumptions has been tested.
That being, the combined space heating and hot water production Φh1 , the estimated space heating
alone obtained by filtering out apparent DHW production Φh2 , and the estimated space heating and
electricity consumption Φh3 . The filtering is outlined in the presentation by the author from the 3rd

IEA-EBC Annex 71 Expert Meeting in Chambéry, France [112].

The tested model is

ϕ(B)Ti,t = ω(B)Ut + et , (4.53)
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where

U⊤
t =

[
Te,t Φh,t Qpv,t

]
, (4.54)

ω(B) =

ω1(B) 0 0

0 ω2(B) 0

0 0 ω3(B)

 , (4.55)

with the order of the output polynomial being 4, and the order of the input polynomialsω1(B),ω2(B),
and ω3(B) equal to 0, 0, and 3, respectively. From Equation (4.13) it can be seen that order zero corre-
sponds to a non-lagged input variable.

As mentioned in Section 4.2.1 the auto-regressive model relies on equidistant inputs and outputs. Con-
sequently, it is not possible to omit the day-time data. Instead, the model can for example be estimated
bymeans of weighted least squares. The day-time residuals are simply assignedwith a weight of zero, and
the night-time residuals with a weight of one.

Validating themodels through the residuals’ auto-correlation function, one needs to take the weightings
into account. By usingweights of zero, it essentiallymeans that the corresponding data are omitted from
the fitting process. The same data should, therefore, be omitted in the residual analyses. However, by
just removing them and calculating the auto-correlationwill bewrong. The reason is that the correlation
between the first residuals in the night-timewill be determined by the correlation between them, and the
last residuals in the previous night-time. The missing values need therefore to be treated properly, as
shown in e.g. [113].

The smallestmodelwhich fulfilled the requirements that thenoise shouldbewhitewithmean zero,when
applied on both data sets was found.

In Table 4.2 the estimated heat loss coefficient (HLC) and the root mean squared error (RMSE) of the
model residuals are shown. It can be seen that the HLC estimated from all the data varies by 12.8W/K
depending on the signal used for the heat input in the model. In contrast to that, the standard error of
the HLC is significantly smaller when estimation is carried out on night-time data. That is despite the
fact that the model is estimated on a smaller data set (one-third) due to the exclusion of the day-time
values.

Table 4.2: Comparison of estimated heat loss coefficients (HLC), standard errors (σ), and root mean squared errors (RMSE)
of the model fits when using all available data and night data, respectively.

All data Night data Heat input

HLC (σ)
[W/K]

69.8 (5.6) 55.7 (3.5) Combined space heating and DHW
57.9 (4.8) 54.3 (3.5) Estimated space heating
57.5 (4.8) 54.3 (3.5) Estimated space heating and electricity use

RMSE
[◦C]

0.0438 0.0261 Combined space heating and DHW
0.0432 0.0262 Estimated space heating
0.0432 0.0262 Estimated space heating and electricity use

The model fit is also improved by using night-time data. By modelling the night-time data only, the
RMSE was reduced by around 40%.
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In conclusion, the results show that the HLC estimate is far more consistent and precise when using
night-time data. The model fit is better as well. This may indicate that day-time data consists of more
disturbances than night-time data. This is most likely because the occupants interact with the building
and therefore affect the thermal dynamics significantly more during day-time, than night-time. Addi-
tionally, the constant solar transmittance may not be sufficient to describe the solar gain as described in
Paper B.

This technique is further applied to buildings with night-setback in Paper D to estimate the energy
flexibility potential, and to cluster them accordingly.

As an alternative to omitting data entirely, Paper A presents a method for estimation of the presence of
occupants in residential buildings, with the ultimate goal ofmodelling the system and/or the observation
noise more carefully.

4.5 Inaccuracy Solar Gain Estimation – A Common Issue
In all of the previous presented models, the solar gain has either been neglected because night data were
used, or it has been treated as a constant proportion of the solar irradiation. In this text the fraction of
solar gain and solar irradiation is called solar transmittance. In the field of building engineering, the solar
transmittance is solely a window property called the g value, or the gA value if window area is multiplied
with it. The latter is expressed as

gA =
Φsol
I

, (4.56)

whereΦsol is the solar gain measured in watts, and I is the solar irradiation measured inW/m2.

By using data-driven methods to estimate the solar transmittance, it does not only become a function of
thewindowproperties andwindowareas—but also a functionof shading obstacles around thebuilding,
dirt on the windows, etc. It is therefore not directly comparable with the building physical term.

Solar transmittance is varying significantly during the day. The variation is dependent on things like the
building geometry, the window properties, and the surroundings. So, it is dependent on factors which
are not easily quantifiable from a data-driven modelling perspective. This is also why a simplification,
such as treating the solar transmittance as constant is commonly used.

In the following, the variations in the daily solar transmittance is brought into focus.

The Fraunhofer data set [93] from the IEA-EBC Annex 71 project [86] used earlier, provides detailed
measurements of solar irradiation, as well as indoor irradiation in the test buildings. This gives a great
opportunity to investigate the actual solar gain in buildings. The data is obtained inDecember 2018 and
January 2019.

The test building is a representation of a two-story single-family house of 165m2, withwindows towards
the north (1.3m2 glazing area), south (7.2m2), east (1.3m2) and west (2.6m2). In one of each of the
north, south, east andwest windows the indoor and outdoor solar irradiationweremeasured in a parallel
plane of the window. In Figure 4.6 the solar gain for each of the four orientations is shown. The solar
gain is simply calculated as the product of themeasured indoor irradiation and the corresponding glazing
area.

From the south-orientedwindows (7.2m2 glazing area) it is seen that the solar gain can reach levels of up
to 8000W. This will undoubtedly affect the indoor temperature. A good solar gain model is therefore
important to describe the thermal dynamics of the building.
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It should be noted that the measurements in Figure 4.6 are obtained during a period with snow-covered
ground. The number are, therefore, higher than one would expect due to increased ground reflection.
The order of the effect is however unknown.
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Figure 4.6: Solar gain obtained from measurements of outdoor and indoor measurements of total solar irradiation. The mea-
surements are from a test building at the Fraunhofer Institute in Holzkirchen, Germany.

The typical modelling approach to estimate the solar transmittance gA (and consequently the solar gain
Φsol) is

Φsol = gA Ig + e, (4.57)

where Ig is the global solar irradiation, and e ∼ N(0, σ2) is the noise term.

The model in Equation (4.57) is fitted on the Fraunhofer data and the estimated transmittance and the
residuals are shown in Figure 4.6.
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Figure 4.7: Solar gain estimated as a constant proportion of the global solar irradiation as shown in Equation (4.57). The
red lines indicates the estimated solar transmittance and the bright red band (barely noticeable) indicates the 95 % confidence
interval. The second column shows the solar gain residuals.

In the left plot in Figure 4.7 the solar transmittance obtained from the measurements of the indoor and
outdoor total solar irradiation is shown (black and red dots). Two patterns dominate the picture: first,
a dense point cloud of red dots with a constant mean of approximately 10m2 is seen, and secondly, a
convex shape of black dots is seen in the upper region of the plot. The red dots indicate low levels of
beam irradiation and the black dots indicate high levels of beam irradiation. It is clear that a constant
solar transmittance is a poor model choice for such non-linear data. The red straight line and its barely
noticeable 95 % confidence interval which minimises the squared errors of the predicted solar gain is an
example of that. The estimated solar transmittance (gA) is obtained by Equation (4.57).

The right plot shows the errors of the predicted solar gain as a function of the azimuth angle, given the
estimated constant solar transmittance. The residuals show, not only that the requirement of the model
errors is violated, but also that rather large errors for a house with less than 13m2 of window glazing is
obtained.
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The residuals show clearly that there is a dependency on the azimuth angle, but it also shows two distinct
patterns for overcast periods (red dots) and clear sky periods (black dots). To give a better description of
the solar gain, a new sun position dependent semi-parametric method is proposed in Paper B.

4.6 Conclusion on Data-driven Methods
Themethod outlined in the previous sections shows examples of methods used in practice andmethods
used in research. In general, it can be said that practitioners tend to use quasi-stationery methods for
documenting the thermal performanceofbuildings,while researchers tend towork anddevelopmethods
which can explain the thermal dynamics of the building.

Two central and related reasons for the dynamical models’ high attention in the field of research, is, for
the first, that dynamical models can be used for improved building control. This being for example
model predictive control (MPC) which optimises the adjustments of the building systems according to
e.g indoor climate criteria, energy price and/orweather forecasts in a proactivemanner [114]. Second, the
dynamical models naturally offer additional information about the thermal building performance that
the steady-state model cannot provide. That being information on heat capacities and time constants of
buildings. A recent publication suggested a simplemethod to characterise buildings’ (and other systems’)
capability to act as energy storage [19]— a key element in the transition from a situation with a steady
supply of energy from combustion or nuclear power plants, to fluctuating energy supply provided by
renewable energy sources like wind and solar power. A demonstration of identifying energy flexibility is
given in Paper D.

To achieve the best control strategy and get the best indication of the thermal building performance, ro-
bustness and reliability of the estimated models are important. The importance of accurate estimates
are, however, even more important if it is used for building documentation, which potentially could
have a financial impact on the various parties involved in the building design and construction. For pre-
diction models— e.g. in MPC—the actual physical interpretability is less important as the focus is on
prediction. That said, the models need to be physical meaningful in the sense that they are causal.

The current state-of-art in the field of parameter identification described earlier shows both progression
and pitfalls. The pitfalls especially emerge when well functioning dynamical models used on experimen-
tal setups are applied to the occupied building as seen in e.g. [58]. In that case, special attention should
be put on selecting data with the least amount of disturbances as done inPaper D, and/or describing the
noise better by for example using ARMAXmodel rather thanARXmodels to identify thermal building
dynamics.

In Chapter 5 the focus will be on the work carried out in as part of this thesis to tackle some of these
issues.
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5 Discussion of Contribution
In the following sections, the four articles contained in this PhD Thesis are presented and discussed.

The focus areas have been divided into twomain areas: modelling with disturbances in mind and obtain-
ing reliable solar heat gains and dealing with unreliable observations.

5.1 Modelling with Disturbances in Mind
In Section 4.4 it was briefly demonstrated how important it can be to treat different periods in the data
differently.

In the following two sections, two papers contained in this thesis are discussed. Paper D shows how
utilising only night-time data and be beneficial. The results of this are outlined in Section 5.1.1. Similarly,
Paper A presents a method for estimating occupancy in dwellings, with the intent of describing the
model noise in a more refined way. This paper is presented in Section 5.1.2.

5.1.1 Characterising Thermal Dynamics Based on Night-time Data
In Paper D the time constants— and from that, the energy flexibility potential as defined in [19]—of
39 Danish single-family houses were estimated based on measurements of indoor and outdoor tempera-
tures only. The data used in this research consists of 10-minute samples of the indoor temperature, and
hourly outdoor temperatures. The outdoor temperatures were upsampled to 10-minute values by lin-
ear interpolation, which was found reasonable during winter nights as the outdoor temperature varies
slowly.

The assumptionwas as stated earlier: the least amount of disturbances in the thermal dynamics are found
during the night. For houses with temperature night-setback, the time constants can then be estimated
for the nightly temperature decay without any knowledge of the heat consumption. The temperature
decay is described by the ARXmodel in Equation (5.1). Hence, the system is assumed to have two dom-
inating time constants.

Ti,t = ϕ1Ti,t−1 + ϕ2Ti,t−2 + ωTe,t + et . (5.1)

As for the previous notation, Ti and Te are the the indoor and outdoor temperature, ϕ and ω are the
model parameters, t is a time, and e ∼ N(0, σ2) is noise.

It is further shown to be equivalent to the set of stochastic differential equations in Equation (5.2) to
(5.2) under certain assumptions. The main assumptions are that during the night, there is no heat con-
tribution from the sun, and the heating is turned off. Therefore the heat input Φh and the solar gain
gAIg can be neglected. Furthermore, it is assumed that there is no observation noise, which results in an
ARXmodel rather than an ARMAXmodel as crystallised in Section 4.2.2.

dTi =
1

Ci

(
1

Rim
(Tm − Ti) +

1

Rie
(Te − Ti) + Φh + gAIg

)
dt+ σidWi , (5.2)

dTm =
1

RimCm
(Ti − Tm) dt+ σmdWm , (5.3)

where C and R are the heat capacities and thermal resistances related to the two temperature states Ti

and Tm, where the latter is the temperature of the the internal thermal mass. σm and σi are the scaling
factors of the twoWiener processesWm andWi.
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It was shown that the temperature differences (Ti,t − Ti,t−1) during the temperature decays were dis-
tributed distinctively different from the remaining temperature differences. This information were then
used to pin-point the nightly temperature decays through a two state hidden Markov model (HMM).
In [115] a similar method was used to detect occupants’ activity levels based on CO2 concentration mea-
surements.

Besides that the model was tested on 39 occupied houses, the method was further tested on simulated
data to show is capabilities of estimating the true time constants and thereby the energy flexibility poten-
tial of buildings.

The conclusion of the study was, that there is a clear relation between the estimated long time constant
and the energy flexibility potential. The method therefore potentially serves as a valuable tool for large
scale energy flexibility characterisation and clustering.

This is an utmost important capability in an energy market with variable prices, and for buildings with
price-based heat control. The price signal can thereby be targeted specific end-user clusters to obtain the
desired response. With large shares of renewable and fluctuating energy sources, the desired response
would naturally be one that stabilises the energy grid.

In amarketwithCO2 taxation on energy, the correct prices to achieve a desired end-user response (buy or
wait) is directly related to the energyflexibility. Finally, tomaximise theuptakeof theproduced renewable
energy, reliable estimates of the flexibility are decisive, and by using night-time data for estimation, this
can be achieved.

Additionally, the paper also highlights a possible pitfall regarding the reliability of the indoor temperature
measurements. As a representative indoor temperature is hard or even impossible tomeasure as shown in
Section 4.1.3, themodel parameters describing the correlation between indoor and outdoor temperature
are crucial.

For example, models with an insignificant model parameter ω in Equation (5.1) may indicate that the
temperature decay is related to dynamics inside the house, rather than dynamics related to temperature
loss to the outside. Such internal dynamics could be related to changing temperature stratification or
heat loss to adjacent thermal zones, as the heating is turned off.

5.1.2 Estimating the Occupancy Status for Better Model Descriptions
As indicated in the study in Section 4.4 and as found in the literature in Section 3.1.1, the effect of the
occupants is non-neglectable as they can cause the energy consumption to deviate significantly from
what was anticipated. Therefore, their impact on the measurements used to characterise the thermal
performance are important to take into account as well. Both the study on using night-time data in
Section 4.4 and the work presented inPaper D, have dealt with this in a very strict manner—namely to
disregard the day-time data entirely.

To utilise as much of the information in the data as possible while obtaining as accurate and precise
performance estimates as possible, it seems natural to model the noise in a more sophisticated manner,
instead of treating it as time-invariant or excluding certain data entirely.

The first problem at hand is therefore to gain knowledge about the occupancy status. As it is most un-
likely to obtain data on the actual occupancy status, it needs to be estimated. One approach already
mentioned, is by estimating different levels of occupancy activity based on CO2 measurements [115].
Another approach with several similarities is to estimate the occupancy status by pattern recognition of
the time variations in the CO2 concentration. This methodology is described in Paper A.
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Themethod builds on the tracer gasmethod commonly used formeasuring ventilation rates in buildings.
Typically, a tracer gas, like freon, is injected into a room, and the decay of the gas is monitored after the
injection has stopped.

For tracer gases which are not present in the room under normal conditions the tracer gas mass balance
can be written as

V
dc
dt

= −Qc , (5.4)

where V is the space volume, c is the tracer gas concentration,Q is the ventilation rate, and t is the time.

The air change rate (i.e. the number of times the air volume is changed per unit of time) is defined as
N = Q/V . Using that and solving Equation (5.4) the tracer gas concentration c can be modelled as

c(t) = c0 exp (−Nt) + c∞ + et , (5.5)

where c0 is the initial tracer gas concentration after the cessation of the gas injection, and c∞ is the steady-
state tracer gas concentration [116].

Using the natural presence of CO2 as a tracer gas, the air change rate N and the ultimate steady-state
concentration c∞ canbe found andused as a proxy for the occupancy status. For example, is it reasonable
to believe that the enclosed space which is investigated has been left unoccupied with windows and door
to the outside closed, if the CO2 concentration is decaying as described in Equation (5.5); the air change
rateN is sufficiently slow (indicating that the air exchange occurs due to in- and exfiltration rather than
ventilation); and the CO2 concentration is approaching the outdoor concentration for t → ∞.

As the CO2 concentration of course is not decaying all the time, the decay periods need to be identified.
The approach described in the article is based on non-parametric change point estimation, which tests
for homogeneity in the distributions in pair-wise segments of time-ordered observations.

As the method is non-parametric, no prior knowledge of the distribution is needed. Furthermore, with
the E-divisive change points detection algorithm used, both the locations and number of change points
can be estimated [117].

Based on the detected change points of theCO2 time series, themodel in 5.5 canbe fitted for the different
segments, and evaluated in similarmanners as described earlier. The full set of specificationof the periods
detected is listed in Table 5.1.

Table 5.1: Criteria for sleeping and unoccupied periods. All other periods not fulfilling the criteria are treated as occupied.

Time N c∞ RMSE
[hh:mm–hh:mm] [h−1] [ppm] [ppm]

Sleeping 00:00 – 06:00 < 0.18 < 700 < 10
Unoccupied — <0.18 < 460 < 10

Despite no proper model validation being possible, as the actual occupancy status were unknown, the
results showed good agreement with other measures which typically also are related to the occupancy
status—namely electricity and water use.

As the CO2 concentration was only measured in the living room, there is a possibility that the method
would cause false-positive errors. This is expected to occur in situations where the CO2 concentration
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decays due to air mixing with other rooms. E.g. if a door between a rooms with high and low concentra-
tions suddenly is opened.

A few suggestions to tackle this problem could be to either installmore sensors in the different rooms and
monitor the CO2 exchange between them, or potentially model the CO2 concentration with a second-
order model. That way a rapid first decay could indicate sudden exchange between to adjacent rooms,
and the second slower decay could indicate the air exchange between inside and outside.

The result of themethod reveals estimated periodswith occupants, without occupants, and periodswith
sleeping occupants. This information can now be used as model inputs in a quasi-stationary or dynamic
model as those outlines in Chapter 4, in order to treat the different periods in a certain manner. For in-
stance, it might be beneficial to apply weighted error estimation techniques tomaximise the information
from unoccupied periods, while increasing the uncertainty of the data obtained form occupied periods.
That way, no information is disregarded entirely, but instead partially down-weighted.

5.2 Reliable Heat Gains and Observations
As demonstrated in Chapter 4, the solar gain and the indoor temperature can result in significant errors
if not treated properly, which is the focus of this section.

In Paper D only night-time data were used, and the problem with erroneous solar gain estimates were
omitted. For day-time data the solar irradiation needs for most cases to be modelled. A novel method
which describes the relationship between the sun position and the solar gain is given in Paper B, and
presented in Section 5.2.1.

In Section5.2.2 the content ofPaperC is discussed. Here, the indoor temperature is disregarded entirely,
and a base temperature is estimated instead, in order to overcome the issues of obtaining a representative
indoor temperature.

5.2.1 Solar Gain Modelling
In Section 4.5 the effect of the solar irradiation was shown on a test house representing a single-family
house. The total glazing area was approximately 13m2, where 7.2m2 face the south. By estimating the
solar gain as a constant fraction of the solar irradiation, the model errors were found to be in the range
from−2000W to 3000W.

In Paper B a new approach to model the solar gain has been proposed. The aim was to model the sun
position dependent solar transmittance, and thereby the solar gain. To estimate an unknown function
such as the solar transmittance, different methods can be applied. In Paper B the B-splines were chosen.

Splines, however, exist in many forms. Common for all of them is that they are characterised as piece-
wise polynomials while being continuously differentiable in all points up to a certain order. The location
where each piece connects with the next is called a knot.

Splines are oftenused for interpolation, smoothing, and function approximationofnon-linear functions.
They do not rely on any prior knowledge of the function one wants to estimate [118]. Furthermore, the
non-linear operations are done before themodel estimation by defining a series of knots and basis splines.
A linear combination of the basis splines is then estimated in the model estimation process. Hence, the
model can describe non-linear phenomenons but is kept linear.

In Figure 5.1 the estimated splines on the data fromSection4.5 is shown. In the upper-left plot, the spline
is fitting to the global irradiation, and in the lower-left plot, the spline is fitted to the beam irradiation,
and a constant solar transmittance is fitted on the diffuse solar irradiation.
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Compared to the model in Section 4.5, the root mean squared error of the first model is reduced by 9%,
and by 50% in the second case.
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Figure 5.1: Solar gain estimated by splines. The upper-left plot shows the result of estimating the solar gain based on global
irradiation only. The bottom-left plot shows the results of the solar gain estimated by a splines fitted to the beam irradiation,
and a constant fitted to the diffuse irradiation. The fit and a 95% confidence interval are indicated in the left plots. The plot to
the right shows the solar gain residuals.

In Paper B the theory regarding basis spline construction and implementation in grey-box models are
given. Additionally, the method was applied on two use cases—one for identification of thermal prop-
erties in an apartment, and one prediction and control focused use case for a solar collector field. Even
though only the historic global irradiation data were available for the apartment case, the inclusion of
splines improved the model significantly in terms of log-likelihood.

Regarding the solar collector field, the splines were able to capture the effect of a shading forest, which
cast shadows on the collectors in the afternoon and hence reduced the return temperature.

The article showed a rather big potential across different fieldswhere solar irradiation is a dominant factor
of the thermal dynamics. However, there is still room for improvement as discussed in the remaining
section.

Solar irradiation is most oftenmeasured in a horizontal plane—or at least a fixed plane— to limit main-
tenance of the sensors. This results in increased uncertainties as the incident angle between the sunbeams
and the measurement plane increases. For global irradiation measurements, this is at sunrise and sunset.
The result is that the solar transmittance is difficult to estimate in these regions.

From Figure 6 in Paper B an opposite pattern is however seen for the estimated spline in the morning.
The reason is that the upper boundary of the left-most spline parameter was reached. A natural way of
solving this issue would be to increase the boundary of the spline parameter. However, at the time it
was believed that a solar transmittance of more than 25m2 (this was the upper bound for the parameter)
were unreasonable for the apartment with approximately 11m2 of total window area.

With the Fraunhofer data shown in Figure 4.7 and Figure 5.1, it, however, became evident that the solar
transmittance (measured in square meters) exceeded the actual window area by approximately a factor
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five just after sunrise and before sunset. The total window area of the Fraunhofer test house is 12.4m2.
However, the solar transmittance obtained from measurements is in some cases above 60m2. This is a
direct implications of the vertical oriented windows and the horizontal solar irradiation measurement
plane.

The parameter boundaries of the basis spline should therefore not be restricted toomuch in periodswith
large incident angles between the beam irradiation and the measurement plane.

Another consequence of using splines is that a knot sequence need to be defined before the basis splines
can be constructed.

As the actual solar transmittance is unknown it can be troublesome to figure out where the spline knots
should be located to increase the efficiency of the basis splines. Further research should ideally be put
into this topic, or alternative “knot-free” methods such as Fourier series could be tested.

Finally, the physical interpretation of the estimated spline might in some cases be troublesome.

The straight forward interpretation of the estimated solar transmittance curve (i.e. the estimated spline)
is that it is the fraction of solar irradiation which results in a solar gain at any given azimuth angle. There
is, however, a few issues one need to be aware of before drawing too many conclusions.

Even though the use of splines may result in significantly better fits, the estimated function may not
match the expectations. If, for example, a multi-room house is modelled as a single thermal zone, the
estimated spline may depend on the rooms’ heat capacities and how the indoor temperature is obtained.
This seen in the following example.

EastWest

Room 1 Room 2

Estimated gA curve

True gA curve
(symmetric)

Sunrise Sunset

.

Figure 5.2: Conceptual illustration of estimated and true gA curve obtained for dynamical model of space volume-weighted
indoor air temperature. The plan drawing to the left shows two rooms with same total heat capacity, and window size, but the
space volume of Room 1 is two time the space volume of Room 2.

If the space volume-weighted average indoor temperature of the building in Figure 5.2 is modelled, cer-
tain unintended implications on the estimated solar splinemay arise. In this example the total heat capac-
ity and the window area is the same, however, the space volume of Room 1 is double the size of Room
2.

In that case, the volume-weighted average indoor temperature increment due to solar gain in Room 1,
will be double the increment for the same level of solar gain in Room 2. This is in defiance of the fact
that the actual window size is identical for Room 1 and Room 2.

The solar transmittance spline may, therefore, explain more than one anticipates. Consequently the
model interpretation may be reduced, but the model accuracy is improved. A possible solution to in-
crease the interpretability is to find a well-balanced sampling rate, which is short enough to contain the
dynamics related to the solar gain, and long enough to make the effect of the solar gain kick through in
all the rooms of the thermal zone.
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5.2.2 Modelling Without Indoor Temperature Observations
In Paper C the focus has been on scalable models to estimate heat loss coefficients, solar transmittance,
and indications of potential air leakage issues, etc. To do so, the traditional energy signature described in
Section 4.1.3 has been reformulated such that the transition periods at which the building change from
weather dependent to a weather independent thermal state is taken into account. Finally, the model
errors are modelled separately to estimate the effect on the heat consumption caused by the occupants.

As the energy signature relies on quasi-stationary conditions, rather coarse time resolutions in the data
need to be used. In this article, daily average values have been used.

As described in Paper C the energy signature is typically treated as a regime model, where the heat con-
sumption is weather dependent in the first regime, and weather independent in the second.

For the 16 Danish dwellings investigated, no cooling or heat recovery systems were present. The weather
independent regime is therefore treated as constant. The weather dependent periods, on the other hand,
were modelled by five different model formulations, whereas the most general were

Φh = (UA0 +WsUAW) (Tb − Te)− gA Ig + e , (5.6)

whereWs is thewind speed,UA0 is the heat loss coefficient forwind speeds equal to zero, andUAW is the
additional heat loss due to increments in thewind speed. Furthermore, gA is the solar transmittance, Ig is
the global solar irradiation,Te is the outdoor temperature,Tb is the base temperature, and e ∼ N(0, σ2)

is the normally distributed noise with mean zero, and variance σ2.

The base temperature Tb is the outdoor temperature at which the building is in thermal balance, which
is

Tb = Ti −
Φx

UA0 +WsUAW
, (5.7)

where Φx is the unmodelled heat gains and losses. In the specific model used, the base temperature was,
however, treated as constant such that

Tb = Ti −
Φx

UA
. (5.8)

The model suggested in this paper distinguish itself from the typical energy signature models found in
the literature, by describing a smooth transition between weather dependent and weather independent
periods. This is achieved by a more detailed description of the heat demand in the transitions period (i.e.
including wind and solar irradiation), and secondly, by formulating the energy signature as the smooth
maximum function, LogSumExp, typically used in neural networks.

The LogSumExp function used is

LSE(f(x), g(x)) = log [exp(f(x) k) + exp(g(x) k)] k−1︸ ︷︷ ︸
Smooth approximation of max{f(x), g(x)}

, (5.9)

where f(x) and g(x) are substituted by Equation (5.6) andΦ0 + e, respectively. Φ0 is the constant heat
consumption during weather independent periods, and k is a hyperparameter describing the transition
pace. The full model is

Φh = log
[
exp(((UA0 +WsUAW) (Tb − Te)− gA Ig) k) + exp(Φ0 k)

]
k−1 + e . (5.10)

The results show that systematic errors (especially around the transition period) canbe diminished, while
the model accuracy is improved.
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As themodel treats the base temperature in Equation (5.8) as constant, it (in practice)means the that the
indoor temperature and the unmodelled heat gains and losses are treated as constants as well. This is of
course a crude assumption, which, as argued for in the article, also is the reason for the auto-correlated
residuals.

Under the assumption that the thermal mass does not have any significant effect on the heat consump-
tionwhenusingday-to-day average values, the correlation ismost likely due tooccupants’ time-correlated
effects on the heat consumption. Thatmeans that the occupants’ effect can be estimated as a function of
time by non-parametric kernel estimation as used in [119] as well. Doing so, a corrected time-varying es-
timate of the unmodelled heat gainsΦx(t) can be obtained. The use of such estimate is further discussed
in Section 5.3.

5.3 Quantifying Occupants’ andWeather’s Effect on the Energy
Use

By estimating the occupants’ related effect on the heat consumption as mentioned above and described
in Paper C, the method in the paper offers a novel approach to separate the energy use caused by the
occupants, as well as the weather conditions, and the building envelope.

Todocument the buildingperformance andoccupants’ effect on the energy consumption, a fewbuilding
design assumptions need to be known. That is the design weather data; the design indoor temperature;
internal heat gains; and ventilation losses. From—at least—theDanish EPC calculation toolBe18 these
numbers can be extracted directly [46].

Thedocumentation canbedone in several steps to illuminate different reasons for a potential discrepancy
between expected and realised energy use as described in Paper C.

A Unintended occupants’ related differences in the energy consumption can be estimated as the differ-
ence between the estimated user related heat gainΦx(t) and the user related heat gain,Φx,design(t),
assumed in the design phase.

The user related heat gain Φx,design(t), unaffected by the weather, can be estimated by

Φx,design(t) = UA0 (Ti,design − Tb(t)) + Φvent,design + Φint,design , (5.11)

where Ti,design, Φvent,design and Φint,design is the anticipated design indoor temperature, design ven-
tilation loss, and anticipated internal heat gain, respectively. UA0 is the heat loss coefficient under
wind-free conditions estimated by Equation (5.10), and Tb(t) is the time-varying estimate of the
base temperature— see Paper C for details on this.

The higherΦx(t) is, themore occupants-related heat are required to bring the building in thermal
balance, under the assumptions that the indoor temperature is equivalent to the actual indoor
temperature, i.e. Ti,design = Ti.

That means, if Φx(t) > Φx,design(t) the internal heat gains are higher than expected in the design
phase; the ventilation loss is lower than expected in the design phase; the indoor temperature is
lower than the design temperature, or a combination.

On the other hand, ifΦx(t) < Φx,design(t) the opposite is true.

B Weather related differences in the energy use can be estimated by comparing the predicted en-
ergy use with the actual weather conditions, and the predicted energy use with the outdoor tem-
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perature, wind speed, and global solar irradiation used in the design phase. The model in Equa-
tion (5.10) is used for prediction.

C Building envelope related differences in the energy use can be estimated as the difference between
the predicted energy use obtained using Equation (5.10) and the occupants andweather corrected
energy use obtained from point A and B, above.

The concept is further illustrated in Figure 8 in Paper C.

The concept still needs to be validated on either simulated or actual building data, and the method for
estimating the occupants’ effect on the energy use may eventually be refined.

As themodel is formulated as a fully differentiablemodel, contrary to the typical energy signaturemodel,
it opens up for more advanced estimation techniques. One natural model extension is to estimate the
model inEquation (5.10) and the occupants’ relatedheat gainΦx(t), simultaneously. This canbedoneby
formulating themodel as a second-order state-spacemodel, with the occupants’ related heat gain∆Φx(t)

seen in Figure 5 in Paper C, as a mean-reverting hidden state.

Alternatively, the modelling approach presented in the paper can be estimated recursively, such that the
estimate ofΦx(t) is fed back into the model in Equation (5.10) as an additional heat gain. A new realisa-
tion of Φx(t) can then be obtained, and the routine can be repeated until convergence.
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6 Perspectives and Conclusions
In the previous chapters, a summary of the work and some of the thoughts behind this PhD study have
been presented. The focus has been on data-driven methods for reliable energy performance characteri-
sation of buildings. The broad lines and trends concerning energy policies in the EU have been touched
upon in Chapter 2, and issues regarding the widespread phenomenon of the energy performance gap
were discussed in Chapter 3. From the review of the two topics, it is evident that better tools for mon-
itoring the progression and alignment of visions and realities in the EU are needed, and so are tools for
screening the building stock for high potential energy savings.

With increased data collection and improved data accessibility from the EU building stock, the market
for data-driven methods for energy performance characterisation of buildings is expanding. The most
widespread methods used in practice and found in the literature were outlined in Chapter 4, and in
Chapter 5 some of the concerns and issues with the state-of-the-art methods are brought into focus. In
the latter chapter mentioned, the main focus has been on issues which emerge as a consequence of the
occupants’ interaction with the building. That being increased disturbances of the thermal state of the
building. Additionally, the importance of proper indoor temperature data and solar heat gain estimation
were discussed.

Even though data-driven performance characterisation methods have been studied for years, it has never
really gains traction within the field of civil engineering. Instead, energy performance is typically quanti-
fied by theoretical and deterministic models with assumptions that might not match reality.

Three reasons for themissing breakthrough are believed to be that 1) the general use of statisticalmethods
in civil and building engineering practices is not common; 2) there is no “off-the-shelf” tools which can
be used by the practitioners today and; 3) the reliability of the methods has been varying due to issues
such as those outlines and tackled in this thesis.

Recently, an growing interest for data-driven performance characterisation tool has, however, emerged
among building engineering consultancies and contractors. Likewise, has the focus of data and energy
performance documentation within the EU intensified with the new Energy Performance of Buildings
Directive (EPBD). A future with a simultaneous bottom-up and top-down willingness to implement
data-driven performance characterisation tools, seems possible.

With the studies contained in this thesis, thedata-drivenperformance characterisationmethods arebrought
a big leap closer to practical use. This is done by providing a better understanding of how and why dif-
ferent methods should be used in order to overcome modelling issues related to occupants interactions
with the building and unreliable data.

The concept of reducing the disturbances related to the occupants was tested on 39 occupied Danish
single-family houses inPaperD. In this case, and as demonstrated in Section4.4, the disturbances related
to the occupants were reduced by modelling on night-time data only. The reasoning is that occupants
most likely are asleep during the night, and consequently disturb the thermal dynamics less. Additionally,
the complex nature of modelling the solar gain in the building can be disregarded.

Unreliablemeasurements of indoor temperatures have been brought into focus as well. A highly scalable
method—which does not rely on indoor temperature measurements— for identifying key parameters
related to the building’s thermal performance and the occupants was presented in Paper C.
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In Paper A the foundation for potentially more refined methods for handling the disturbances caused
by the occupants was outlined. Here the occupancy status was estimated from measurements of CO2

concentrations, which in the future can be used as model inputs in e.g. the diffusion term of a stochastic
state-space model formulated by stochastic differential equations.

In most of the literature found on data-driven thermal building performance modelling, the focus is on
the deterministic part of the model. However, as some significant heat gains (typically related to the
occupants) cannot be quantified by feasible means, the deterministic part of the model formulation will
inevitably be insufficient to provide independent and identically normal distributed errors as it typically
is required

Future research on the topic of treating system and observation noise in physics-based models exposed
to high levels of disturbances are therefore suggested.

Another source of significant errors is the simplified solar gainmodels. It has been shown, based on actual
measurements, that solar gain can reach significant levels even for normal houses. Additionally, the solar
gain is highly dependent on the building design, the window properties, and the surroundings, which
for purely time series measurement-based models are unknown variables.

Contrary to the typical simplisticmodelling approach found in the literature, namely that the solar trans-
mittance is constant, a new and improved semi-parametricmethod for estimating the solar transmittance
was proposed in Paper B.

In Paper C a methodology for estimating the effect of the occupants’, the weather’s, and the building
envelope’s contribution to the heat consumption is outlined. It is suggested that further research is car-
ried out on this topic to fully understand and quantify the performance gap of buildings. With models
of such simplicity in terms of required data, this opens op for large scale screening and documentation
of the reasons for the performance gap.

Evidence-based quantification of the specific causes for the heat consumptionmay result in better build-
ing design and building construction practice. And, if presented in the right manner, it may even act as
valuable end-user feedback with the end-goal of making themmore educated and energy-aware building
users.

In this thesis, the focus has to a large extend been on data-driven models applied on occupied buildings.
The studies have revealed several pitfalls and challenges. To understand the data-driven models even
better, it is suggested to step back and use simulated building data, and data obtained from controlled
experiments, to verify the findings.

This PhD thesis is concluded by:

1. Disturbances and noisy data are bothmajor sources of estimation errors. Proper handling of noise
and disturbances (e.g. by including information on occupancy status as estimated in Paper A, or
omitting particular noisy periods entirely as in Paper D) is therefore seen as important as the
formulation of the deterministic part of the model. The deterministic and physics-based part of
a data-driven building model brings the building performance estimates in the ballpark, whereas
the description and handling of system disturbances and observation noise, increase the precision
and consistency of the estimated models.

2. Often used methods for data-driven modelling of thermal building performance results in signifi-
cant errors due to the simplifiedmodel formulations (such as themodel formulation of solar gain),
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andunreliable data (such as the indoor temperature). As presented inPaper B andPaper C, these
obstacles can be overcome by applying appropriate modelling techniques.

3. The progression of reducing the performance gap issues in buildings sometimes seems to be stag-
nated. That is despite the fact that plenty of research suggests that the issue is evident. It is believed
that one of the reasons is, that the performance discrepancies have been practically infeasible or
even impossible to quantify. In Paper C a scalable method is, however, proposed. With further
development and research, it is believed that amore clear picture of the phenomenon can bemade
in practice, and the relevant players can act accordingly to increase the reliability of the claimed
energy performance. After all, a slightly modified quote from Jørgen Nørgaard found on page 3
is: One unit of energy saved in your home, is better than any unit of energy saved in your engineers
Excel sheet.
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Identification of Occupancy Status by Statistical Change Point
Detection of CO2 Concentration

Christoffer Rasmussen∗, Rishi Relan∗, Henrik Madsen∗

Abstract— There is an increasing focus on energy savings
in buildings but still there exist a gap between the calculated
and the realised energy performance. A statistical analysis
performed on in situ measurements of occupied buildings
is one way to reveal if the occupants’ behaviour, the build
quality, or the building design is the underlying reasons for
this performance gap. A critical issue when carrying out the
statistical analysis of the measurements from occupied buildings
is to handle the measurement disturbances caused by the
occupants’ interaction with the building. In this paper, an offline
method combining ventilation theory of buildings with change
point detection of time series measurements of indoor CO2
concentrations is proposed to detect vacant and sleeping periods
in dwellings. The proposed method is tested using the CO2
measurements obtained from a single apartment. The method
developed has classified 19 % of a 14-days period as a vacant
or sleeping period with an 81 % accuracy based on indirect
measures.

I. INTRODUCTION

Within the European Union, households account for 25 %
of the total energy consumption of which 65 % is used
for space heating [1]. Consequently, a significant amount
of the greenhouse gas emission is directly related to the
operation of the building stock. On the other hand, buildings
offer great possibilities for considerable energy savings as
well as aid in the reduction of greenhouse gases through
energy renovation. To reach the European goal of reducing
greenhouse gas emission by 80-95 % by 2050, as compared
to 1990 [2], reducing the greenhouse gas emission from the
building stock is necessary.

Often, the energy consumption for buildings is under-
estimated. One study shows that the difference between the
estimated and the actual energy consumption can exceed
100 % [3]. In another study, a difference of 300 % has been
observed between identical buildings [4]. This discrepancy
between the estimated and the realised energy consumption
can be related to oversimplified assumptions of, e.g. the
occupants’ behaviour, general mistakes in the design, as
well as unmethodical workmanship during the construction
phase. Contrary to this, the common misconception of this
discrepancy is substantiated by the “faulty” behaviour of the
occupants. However, it is difficult to ascertain whether the
energy performance gap, in fact, is related to the occupants
or the design and build quality of the building.
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Today, there is no operational method or tool available
that can identify, quantify and analyse the reasons for the
discrepancies between expected and realised energy perfor-
mance. Often, energy labelling system relies on assumptions
similar to those in the design phase of a building which
enhances the probability of unreliable results. Alternative
methods for identifying the total heat loss coefficient like the
co-heating or the quick U-value of buildings (QUB/e) method
[5], requires that the building of interest is vacant during the
measurements. In addition to this, these methods are labour
intensive and cannot selectively analyse the thermal perfor-
mance of specific building parts. Hence, the development
of reliable tools for in situ characterisation of the actual
energy performance is of utmost importance. Such tools can
help map potential renovation focus areas of the building,
ensure substantial energy savings, improve thermal comfort
and eventually raise the build quality.

Data-driven methods—especially the grey-box models—
present great potential in solving some of the issues dis-
cussed above because the dynamics of the system under
consideration can be learned directly from data without the
need to describe the full complexity of the building physics.
Most of the current research on data-driven methods for the
determination of energy performance of buildings deal with
unoccupied buildings [6]–[8]. Consequently, they disregard
the stochastic and fluctuating dynamics, such as ventilation,
infiltration and hot water draws caused by the occupants.

Due to ease of prediction of heat load from people and
the limited interaction of occupants with office buildings, a
method for identifying the energy performance of occupied
office buildings was proposed in [9]. These assumptions
might not be valid for the dwellings, as the occupants are free
to interact with the building, and therefore, strongly affect the
indoor environment, the energy consumption, and ultimately
the complexity of models that can describe the building
dynamics. Grey-box models of the building dynamics of
occupied dwellings was proposed in [10]. These models did
not account for the presence of occupants and the occupants’
interaction with the building which led to inconsistent results.

One way to account for occupants, is to track their
presence, and include that information in the modelling
procedure. However, this is in many cases inexpedient.
Detection of occupancy status from other measures such
as CO2 is therefore important. Time series segmentation
of CO2 and pattern recognition techniques for detecting
different predefined occupancy profiles were presented in
[11], and several other approaches for occupancy detection
with different levels of complexity exist in the literature [12].
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As mentioned, the energy consumption is related to the
status (presence, absence, sleeping, etc.) of the occupants
of the building. It is therefore of interest to identify the
status of the occupants to develop accurate models of the
thermal dynamics. The gained information on the occupancy
status can be used in conjunction with systems identification
techniques. This enables us to quantify not only the perfor-
mance of the dwelling itself but also the occupants’ influence
on the energy consumption and the thermal environment of
the building. The direct use of such information is relevant
for e.g. energy labelling of buildings and policy-making
regarding energy renovation investments.

In this paper we propose to combine a statistical non-
parametric approach to change point detection (CPD) and
the physics-based ventilation theory of buildings to detect
periods with the least interaction between occupants and
the building. This support a robust estimate of occupied
dwelling’s thermal performance. The periods of interest is
specifically the vacant and sleeping periods.

The remaining paper is structured as follows: Section II-
A discusses how the ventilation theory of buildings can
be applied to identify the CO2 signature during the vacant
and sleeping periods. In Section II-B, a method to detect
change points in CO2 time series measurements is explained.
Finally, experimental results are discussed in Section III, and
conclusions and plans for the future work are described in
Section IV.

II. METHOD

In this section, we first describe how the ventilation theory
of buildings can be used to identify the CO2 signature of the
occupancy status of interest through time series measure-
ment. After that, we describe how a statistical change point
method can be used to detect potential time segments of
vacant and sleeping periods using time series measurements
of indoor CO2 concentration.

A. CO2 Signature: A Ventilation Theory Approach

By using the ventilation theory for buildings, the air
change rate of an enclosed space can be determined by the
concentration decay method [13]. In practice, this is done by
injecting a tracer gas—e.g. CO2—into the enclosed space
and tracking the concentration decay for a period of time
after the injection has stopped. The air change rate can then
be calculated by utilising the tracer gas mass balance. If the
potential outdoor tracer gas concentration is neglected, the
tracer gas mass balance equation is given by (1) [13].

V
dc
dt

=−Qc (1)

where V is the space volume, c is the CO2 concentration, Q
is the ventilation rate and t is time. By introducing the air
change rate, N = Q/V , and reformulating (1), the dynamics
of the CO2 concentration can be described as in (2).

c(t) = c0 exp(−Nt)+ c∞ (2)
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Fig. 1. Histogram of registered daily minimum indoor CO2 concentrations.
The outdoor concentration is assumed to be represented by the most frequent
observed daily minimum concentration (460 ppm), and is used as vacancy
criteria for c∞ in (2).

where c0 is the initial tracer gas concentration after the
cessation of the gas injection. Notice the added constant,
c∞, which is the steady-state tracer gas concentration.

In this case, the injected gas is the CO2 emitted by the
occupants and the enclosed space is the apartment. If the
CO2 concentration follows (2) and decays sufficiently slow
towards the outdoor concentration, it can be assumed that the
apartment is vacant. Limiting the decay rate ensures that the
air exchange is caused by infiltration rather than ventilation.
In addition, sleeping periods can be detected by allowing
a higher steady-state concentration during nighttime. To
observe a CO2 decay, however, measurements should be
obtained from rooms without sleeping people.

1) Steady-state CO2 Concentration: In Figure 1 the histo-
gram of the daily minimum CO2 concentration measured
is shown. In this study, the most frequently observed con-
centration is assumed to represent the estimate of the true
outdoor concentration, which is used as baseline for the
further analyses. From the data described in Section III-A,
the estimated outdoor concentration is found to be 460 ppm.
During the night, which is defined from 0:00 to 6:00, the
maximum steady-state CO2 concentration of 700 ppm is
accepted, as the occupants produce some CO2 during sleep
but do not interact with the building.

2) Air Change Rate: A reasonable estimate of a suffi-
ciently slow air change rate for vacant and sleeping periods
is the infiltration rate. The infiltration rate is the unintentional
air exchange between inside and outside the building. The
measured air permeability, q50, of the apartment is 3.65
cubic meter air per hour per square meter building envelope
(see Section III-A for details on the data). Whereas the air
permeability is a static measure of the air change rate ob-
tained under a pressure difference of 50 Pa between the inside
and outside environment, the infiltration rate is dependent
on the wind conditions, topology of the building and its
surroundings, and the temperature. The average infiltration
rate per square meter of the heated floor can be approximated
by 0.06 ·w50 for vacant periods [14], where w50 is the air
permeability. Notice, that w50 and q50 is based on the floor
area and the envelope area, respectively. The infiltration rate,
Ni, can now be determined from (3).

Ni =
0.06 ·q50 ·Ae

V
= 0.18 h−1 (3)
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where Ae is the area of the envelope (161 m2) and V is the
air volume enclosed by the building envelope (193 m3).

If the steady-state CO2 concentration, c∞, in (2) is below
the outdoor concentration of 460 ppm, the apartment is
assumed to be either vacant or heavily ventilated. However,
if N < Ni = 0.18 h−1, no ventilation is assumed to occur,
and the CO2 decay is a result of pure infiltration with no
additional CO2 production inside the apartment. Hence, the
apartment is assumed to be vacant.

B. Nonparametric CPD of CO2 Time Series

In practice, the observed CO2 concentration is highly
fluctuating and does not decay exponentially most of the
time. Therefore, the time segments with the characteristic
exponential decay need to be identified. To achieve this, in
this paper, we employ the E-divisive algorithm proposed in
[15]. It is a nonparametric approach to multiple change point
analysis of a multivariate time series.

In general, both parametric and nonparametric approached
can be used for change point detection. The advantage of the
nonparametric approaches is, however, that no assumptions
about the underlying distribution family is needed. Fur-
thermore, the E-divisive algorithm is capable of estimating
both the number of change points and their locations [15],
unlike other nonparametric methods [16]–[18]. Finally, the
E-divisive algorithm is based on the Euclidean distance
between sample observations, hence no explicit estimation of
the multivariate density function is needed. Below we give a
very brief introduction to the CPD methodology in general
and the E-divisive algorithm.

For instance, let Z1,Z2, · · · ,ZT ∈ Rd be an independent
sequence of time ordered observations (in this case CO2
time series). For simplicity let us assume that there is only
one change point location τ such that, Z1,Z2, · · · ,Zτ

i.i.d∼ P1

and Zτ+1,Zτ+2, · · · ,ZT
i.i.d∼ P2, where P1 and P2 are unknown

probability distributions. The basic methodology behind CPD
is to test the homogeneity in distribution, H0 : P1 = P2
against HA : P1 �= P2. In case, if H0 is rejected then it can
be concluded that there exist a change point at τ . This
methodology can be further modified to test the existence
of unknown number and the location of the change points
using different methods [15].

The E-divisive method employed in this case study is a
combination of the bisection method [19] and the multivari-
ate divergence method proposed by [20]. To elaborate, let
us consider a case with two random variables X ,Y ∈ Rd

and let Xn = Xi : i = 1, · · · ,n and Ym = Yj : j = 1, · · · ,m be
i.i.d samples from the distribution of X ,Y ∈Rd , respectively,
such that E|X |α ,E|Y |α < ∞ for some α ∈ (0,2]. Then, the
scaled sampled measure of the divergence between their
distributions can be written as follows:

�Q(Xn,Ym;α) =
mn

m+n
�E (Xn,Ym;α) (4)

where �E (Xn,Ym;α) is the empirical divergence measure [15].
Now, for estimating the location of the change point using

the divergence measure in (4) for a time series, let us consider

Z1,Z2, · · · ,ZT ∈ Rd to be an independent sequence of time
ordered observations as described above and let 1 ≤ τ <
κ ≤ T be constants. We can now define the following two
sets, Xτ = {Z1,Z2, · · · ,Zτ} and Yτ(κ) = {Zτ+1,Zτ+2, · · · ,Zκ}.
Then, a change point location τ̂ can be estimated by solving
the following optimisation problem [15]:

(τ̂, κ̂) = argmax
(τ,κ)

�Q(Xτ ,Yτ(κ);α) (5)

To estimate multiple change points, the above discussed
method is then applied iteratively. For instance, let us sup-
pose that k−1 change points have been estimated at locations
0< τ̂1,< · · ·< τ̂k−1 < T , such that the observations are clus-
tered into k clusters �C1, �C2, · · · , �Ck where �Ci = {Z�τi−1

, · · · ,Z�τi
}

and �τ0 = 0 and �τk = T . Once these clusters have been
found the next step is to find a single change point to the
observations within each of the k clusters.

Therefore, by denoting a proposed change point location
as �τ(i) and its associated constant �κ(i) for the ith cluster �Ci
as defined by (5), now let

i∗ = argmax
i∈{1,··· ,k}

�Q(X�τ(i),Y�τ(i)(�κ(i));α), (6)

in which X�τ(i) and Y�τ(i)(�κ(i)) are defined with respect to �Ci
with following test statistic

�qk = �Q(X�τk
,Y�τk

(�κk);α), (7)

where �τk = �τ(i∗) corresponds to the kth estimated change
point, located within the cluster �Ci∗ and �κk = �κ(i∗) the
corresponding constant. To segment the time series of the
CO2 concentration with α = 2, the R implementation is used
[21], [22]. The detected change points now serves as start and
end points for the fitting procedure for the exponential decay
function shown in (2).

C. Fitting and Classifying

At this point, the functional behaviour of the CO2 con-
centration is known, namely the exponential decay function
in (2), and the structural change points can be determined.
It can now be tested if there is no interaction between
occupants and the building, i.e. if the building is under vacant
conditions or when occupants are sleeping, by fitting the
exponential decay function to segregated CO2 data.

The fitted exponential functions are evaluated by the mean
square error (MSE). As baseline, MSE < 100 is used as
criterion. The exponential decay function is repetitively fitted
to each of the identified segments. If the fit of (2) fulfils
the criteria N < 0.18 h−1, MSE < 100, and furthermore,
c∞ < 460 ppm for daytime or c∞ < 700 ppm for nighttime,
the period is classified as a vacant or a sleeping period,
respectively. If multiple sequential segments fulfils the above
criteria, one fit is made for the combined segments.

III. EXPERIMENTAL VALIDATION

A. Data

For this case study, the building data from IEA EBC
Annex 71 [23] is used to validate the performance of the
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developed method. The building is located in an urban
area in England, and consists of four apartments with two
floors. The measurements come from the southern apartment,
which has a floor area of 67 m2 equally distributed on the
ground and the first floor. The ground floor consists of living
room, kitchen, bathroom and hallway with access to the
first floor. The data consist of measurements from October
2012 to November 2015. The period from October 2012 to
January 2013 was occupied by two adults and one child
whereas the second period from March 2013 to November
2015 was occupied by one adult and two children. In the
remaining period the apartment was vacant and unheated.
The apartment is equipped with a monitored mechanical
ventilation unit.

The data consists of the measurements of energy consump-
tion, indoor environmental parameters of the apartment, as
well as the weather data from a weather station nearby. The
data from the house has a time resolution of 5 minutes and
the weather data has a time resolution of 1 hour. The data
does not contain information on occupation. The only CO2
sensor installed is located in the living room on the ground
floor of the apartment. All three bedrooms are located on the
first floor. The technical specifications of the CO2 sensor are
not known.

B. Results and Discussion

The theoretical response functions of the CO2 concentra-
tion is exponential for both decay and built-up given constant
CO2 supply and ventilation rate [13]. Hence, the time series
of the CO2 concentration is assumed to be a combination
of these exponential functions. A natural detection signal is
thus the percentage rate of change (ROC) as shown in the
top plot of Figure 2.

In Figure 2 the identification of vacant and sleeping
periods throughout the 24-hours period from January 22 to
January 23, 2014, is shown. From the top, the plots shows
the detection signal, the measured CO2 concentration, the
water consumption, and the electricity consumption.

In the second plot, the detected vacant, sleeping and
occupied period is shown. One sleeping period is detected
form 01:05 to 06:15 in the morning and a vacant period is
detected between 13:05 and 14:55. Both periods are indicated
with a red fitted curve on top of the CO2 concentration
signal. The grey fitted curve from 09:20 to 11:30 indicates
a period with an exponential decay, but with a steady-
state CO2 concentration that exceeds the limit of 460 ppm.
Furthermore, the segment immediately before 09:20 seems to
be part of the exponential decay but was not detected. In the
beginning of the sleeping period some water consumption is
observed, which in general is assumed to be related to the
presence of awake occupants.

Due to unavailability of any data on the actual presence of
occupants in the apartment, the validity of the classification
performance could not be tested directly. However, an indi-
cation of the performance can be established by comparing
the detected sleeping and vacant periods with the water
consumption.
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Fig. 2. Identification of vacant and sleeping periods for a 24-hours
period during January 22-23, 2014. The first plot shows the signal used
in the E-divisive algorithm. The signal is defined as the moving average
smoothed percentage rate of change (ROC). The second plot shows the
CO2 concentration along side with the detected change points. The red and
grey curves on top of the CO2 curve shows the fitted CO2 decays. The grey
curve shows an identified exponential CO2 decay, which does not fulfil the
steady-state CO2 criterion as c∞ = 536 ppm≮ 460 ppm. The third plot shows
the water consumption, which are use for indirect validation. It is expected
that the water consumption is lower for sleeping and vacant periods than
for occupied periods. The fourth plot illustrates the electricity consumption.
Simultaneous electricity use and water consumption can indicate a running
dishwasher or washing machine, which may run in vacant and sleeping
periods. For the sudden water consumption during the nighttime in this
figure, no electricity peak is observed. Hence, it is not reasonable to believe
that the the water consumption is automated.

The majority of the water consumption is assumed to
be directly related to a physical interaction with the water
system—either by means of water draws from taps, showers
or toilet flushes. In addition to this, a minor part of the water
consumption throughout the day can be automated and timed
by washing machines and dishwashers. Based on this, it is
expected that the water consumption is significantly lower
for estimated vacant and sleeping periods.

For a 14-days period from January 15 to January 29,
2014, the water consumption during the entire period, and
the vacant and sleeping periods is shown in Table I. The
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TABLE I
WATER USE IN ESTIMATED VACANT AND SEEPING PERIODS

All periods Vacant / Sleeping

Mean Median Mean Median

Flow (l/h) 13.9 8.9 14.5 0.0
Draws (h−1) 1.6 1.6 0.7 0.0
Draws (h−1) a 0.8 0.6 0.3 0.0

a Water draws with simultaneous electricity use of less
than 500 W.

table shows the flow rate and the numbers of water draws.
In addition, we distinguish between any water draws and
water draws with simultaneous electricity consumption of
less than 500 W. In this way, it can be indicated if the water
consumption is related to water-consuming white goods
running during vacant or sleeping periods.

Contrary to the expectation, the mean flow for the vacant
and sleeping periods in Table I, is higher than for the entire
14-days period, and the mean number of water draws is only
reduced by approximately 50 %. The results does not reflect
the results shown in Figure 2. Inspecting the medians instead
tells us that only a few water draws are affecting the means,
and potentially that only a few time segments are incorrectly
classified.

In addition to that, it seems reasonable to assume that
a significant share of the water consumption is related to
water consuming white goods running while the occupants
are either not present or sleeping. This can be seen by the
decrease in mean from 0.7 to 0.3 water draws per hour for
the vacant and sleeping periods in Table I.

1) Performance Evaluation: From the 14-days period
investigated, 20 % of the time is estimated to be vacant or
sleeping periods with the baseline criteria. However, only 1 %
of this is estimated to be vacant periods. In comparison, 13 %
of the time is classified as occupied, meaning that the steady-
state CO2 concentration, air change rate or mean squared
error criterion is violated. Without occupation data, it is not
possible to tell if the apartment actually is vacant for only
1 % of the time. However, a higher percentage was expected,
and it is suspected that some vacant periods are incorrectly
classified as occupied. The validity of the detection criteria is
therefore tested and shown in Figure 3. The detection power
is the estimated vacant and sleeping periods without any
water consumption, and the detected hours is the share of
hours classified as vacant or sleeping period.

From the first plot in Figure 3 the share of detected hours
and detection power stay constant from roughly 640 ppm
and above. Increasing the nighttime steady-state CO2 criteria
does therefore not affect the results. On the other hand, for all
the periods estimated as occupied, the daytime steady-state
CO2 concentration of 460 ppm was exceeded. It could be ar-
gued that a higher daytime steady-state concentration should
be used due to low sensor precision or higher outdoor CO2
concentration than assumed. Hence the number of detected
vacant hours would increase. The second plot in Figure 3
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Fig. 3. Indicative performance for various detection criteria. Detected hours
tells the percentage of hours that have been estimated to be either vacant
or sleeping periods for the 14-days period in January 2014. The detection
power tells the percentage of periods that have been detected as either vacant
or sleeping periods without any water consumption.

reveals that an increment of the daytime CO2 criterion up till
500 ppm has no effect, provided that the remaining criteria
remain fixed. Increasing the criterion above 500 ppm, the
number of detected hours increase, but at the expense of
the detection power, as other criteria is violated.

The threshold for the air change rate is determined solely
on the information in the air tightness of the building. As the
apartment is equipped with a mechanical ventilation system,
it is natural to conclude that the threshold is too low for
periods with the ventilation system running. However, the
maximum air change rate of 0.18 h−1 was never reached for
any of the periods classified as occupied, as illustrated in the
third plot of Figure 3.

Finally, by decreasing the maximum allowable mean
squared error of the fits, as illustrated in the fourth plot
of Figure 3, the detection power goes up and the share of
hours detected barely goes down. Based on this analysis, it is
preferable to decrease the the MSE to at least 50. Doing this,
the percentage of detected hours drops from 19.9 to 19.2 %
and the detection power increase from 73.3 to 81.3 %.
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In summary, we see a direct trade-off between detection
power and hours detected for both the daytime steady-state
CO2 concentration and the MSE criterion. Increasing these
two criteria only gives rise to a higher number of false-
positive classifications of vacant periods.

For the the air change rate, we do not see any increment
of detected hours as the criterion is loosened (i.e. increased).
This is counter-intuitive as the apartment is equipped with
a mechanical ventilation system that would increase the air
change rate to a level above the infiltration rate—which is
used as criterion in this case study. Without any detected
effect of the mechanical ventilation system, the experiment
is considered natural ventilated.

Conclusively, we observe either; decreasing detection
power as the share of detected hours increase, or unaffected
detection power and share of detected hours as the detection
criteria in loosened. This indicates that the house actually
was occupied for most of the 14-days period investigated, as
detected.

IV. CONCLUSIONS AND FUTURE WORK

Energy performance measurements of a building during
occupied periods can be profoundly affected by the occu-
pants’ interaction with it. In this paper, we proposed an
algorithm for identifying the vacant and the sleeping periods
in a dwelling using the concentration decay method from
the ventilation theory and statistical change point detection
of the CO2 time series data. This algorithm seeks to ensure
that the occupancy periods can be treated separately while
determining the thermal performance of the building. In
future, this information about the vacant and the sleeping
periods will be used in conjunction with grey-box modelling
methods in revealing the thermal performance of dwellings.

Even though the CO2 concentration data were obtained
from only one sensor located in the living room of the
two-story apartment, promising results were obtained during
the investigation. Based on indirect measures of occupancy
status, 19 % of a 14-days period was classified as vacant or
sleeping periods with an accuracy of 81 %. However, a direct
validation based on data with the information on occupancy
status is therefore preferable.

The algorithm shows good results, but the performance
can easily be enhanced by employing data from more
measurement locations. In addition, a proper selection of
the sensor location, tuning of the hyper-parameter α in the
detection algorithm is also important for an optimal occu-
pancy detection. Furthermore, the apartment was considered
to be naturally ventilated. Hence, further work is needed to
make the algorithm applicable for mechanically ventilated
dwellings.
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Abstract

Modelling the e↵ects of solar irradiation plays an important role in various applications. This paper describes a semi-parametric
(combined grey-box and spline-based), data-driven technique that can be used to model systems in which the solar gain depends
on the sun position. The solar gain factor is introduced, i.e. the absorbed fraction of measured solar irradiation, and estimated as
a continuous non-parametric function of the sun position. The implementation of the spline-based solar gain factor in a grey-box
model framework is described. The method is tested in two case studies—in a model of the internal temperature of a dwelling in
Aalborg, Denmark, and a model of the return temperature of a solar collector field in Solrød, Denmark. It is shown that the solar
gain factor as a function of sun position is able to account for structural variations in solar gain that may occur due to factors such
as shading obstacles and window or absorber orientation. In both test cases, the spline-based solar gain function improved the
model accuracy significantly, and largely reduced structural errors in prediction residuals. In addition, the shape of the estimated
function provided insight into the dynamics of the system and the local solar input characteristics. Accurate representation of such
site characteristics was not possible with any data-driven method found in the literature. Besides the grey-box models used in this
study, the solar gain factor can be used in a variety of data-driven models, for example in linear regression models.

Keywords: Solar gain modelling, Grey-box modelling, Splines, Thermal dynamics, Building energy, Solar heat collectors

1. Introduction

Solar irradiation is a crucial factor in the field of building
engineering, renewable energy generation, and many other
applications. In many cases, measurements or predictions
of the solar irradiation are available, and the e↵ect of solar
irradiation needs to be captured in a model. However, the
relation between solar gain and measured solar irradiation is
typically non-linear and dependent on the position of the sun
and site characteristics. This paper, presents and implements a
data-driven model for dynamical thermal systems, that include
a sun position dependent solar gain. The model is tested in two
thermal systems: a building and a solar collector field.

In both systems, the heat dynamics related to solar irradiation
are modelled for various reasons. For buildings, models
are used to document the energy performance and identify a
potential energy performance gap (Roels et al., 2017; Johnston
et al., 2016; Haldi and Robinson, 2011; Brohus et al., 2010;
Socolow, 1977). For instance, this has been done using data-
driven thermal dynamic building models such as grey-box
models (Roels et al., 2017; Bacher and Madsen, 2011; Madsen
and Holst, 1995). As solar heat gain can significantly a↵ect
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estimated thermal building properties, the model used for solar
heat gain needs to be accurate. This is especially true for well-
insulated buildings with low thermal mass and large window
areas.

Similarly, for solar collector fields, forecasting models need
to describe solar irradiation e↵ects accurately to improve heat
output forecasts and system control. The control must respond
to rapid fluctuations in solar irradiation to prevent the collector
fluid from boiling, and to ensure a high and stable outlet
temperature. As solar irradiation is the dominating e↵ect on
the outlet temperature, an accurate model of the absorbed solar
energy can improve predictions and hence operation of solar
heat systems.

The following two sections present a literature review on typ-
ical implementations of data-driven solar heat gain in thermal
building and solar heat plant models.

1.1. Solar Gain in Thermal Building Models

The solar gain factor of an enclosed space (often called solar
aperture, e↵ective window area, or gA-value) can be seen as the
equivalent area of a perfectly transparent surface that transmits
the same amount of solar energy as the actual windows of the
space.

For inverse problem solving, the location of windows and
shading obstacles are often unknown. Even if the location of
the shading obstacles is known, it can still be cumbersome to
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Nomenclature

Abbreviations
HVAC Heating, ventilation, and air conditioning
IAM Incidence angle modifier
RC Resistance-capacity
SDE Stochastic di↵erential equation
SDHP Solar district heat plant
SHP Solar heat plant

Mathematical Notation
Bi,m The ith B-spline of order m

S Spline function
�i Control point of the ith B-spline
! Wiener process
� Standard deviation of Wiener process
✏ Measurement error

Physical Parameters
t Time s
T Temperature °C
T
∗ Measured temperature °C
↵ Elevation angle of the sun °
� Azimuth angle of the sun °
✓ Solar incidence angle °
I Solar irradiation W�m2

⌘ Solar gain factor m2
or unitlessa

� Heat input W
c Specific heat capacity J�(kg K)
C Heat capacity J�K(mC)e Heat capacity of collector J�(m2 K)
Q Mass flow per collector area kg�s�m2

R Thermal resistance K�W
U Heat loss coe�cient W�(m2 K)
K IAM function unitless
b0 IAM parameter unitless
 Ambrosetti IAM parameter unitless

Subscripts
a Ambient air
i Internal air
m Internal thermal mass
w Building envelope
f Collector fluid
s, r Supply and return
fa Interaction between f and a
mi Interaction between m and i
wa Interaction between w and a
wi Interaction between w and i
g, t, b, d Global, total, beam, and di↵use irradiation
heat Space heating
sol Solar gain
t Time
k Discrete time step

a For the dynamical building models the unit of ⌘ is square meter (m2). In the solar heat production forecasting setting ⌘ is unitless.

estimate their thermal e↵ects, just as it is di�cult to estimate
the e↵ects of other factors such as reflections or dirt on the
windows.

Some data-driven thermal dynamic building models dis-
regard the solar gain (Zeifman and Roth, 2016; Coley and
Penman, 1992) and consequently treat solar gain as model
uncertainty and observation noise. In other models, solar gain
is considered a constant fraction of the global solar irradiation
(Rabl, 1988; Bauwens and Roels, 2013; Madsen and Holst,
1995; Bacher and Madsen, 2011; Jimenez and Madsen, 2008),
for example

�sol = ⌘ Ig , (1)

where �sol is the solar gain, Ig is the global radiation, and ⌘ is
the solar gain factor. The solar gain factor can then be estimated
from data.

When assessing the energy performance of buildings, Mejri
et al. (2011) describe the solar gain in buildings as a hidden
forcing function. They propose a method in which the solar
irradiation striking each building facade, Ii, is estimated sepa-
rately as

Ii = ki Ig , (2)

where i is the facade number and ki is a constant for the i
th

facade. Letting the constant, ki, account for the properties of

the windowpane—e.g. the solar energy transmittance (g-value)
and the area—this method could be used to calculate the solar
gain coming through the windows in a manner analogous to
Eq. (1). However, there is no evidence that this method would
improve model accuracy compared to the simpler approach in
Eq. (1).

Both of the above approaches assume that the solar gain
is independent of the sun position. While these approaches
may be su�cient for buildings with limited window area (and
therefore limited solar gain), they may fall short for buildings
with higher sensitivity to solar irradiation. As suggested
by Bacher and Andersen (2014) and Madsen et al. (2016),
parametric grey-box models could be used in conjunction with
non-parametric models of solar gain, such as splines. Hence,
rather than assuming a constant solar gain factor for the entire
enclosed space or the facade of interest, the factor can be
described as a function of the sun position. The present paper
details the specific procedure for achieving this.

1.2. Solar Gain in Solar Heat Plant Models

Solar irradiation is the main factor that determines the heat
production of a solar heat plant (SHP), so it is crucial to include
the e↵ects of solar radiation in detail when modelling the return
temperature (also called outlet temperature) of a solar heat

2
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field. The solar incidence angle on the panel largely influences
the share of reflected irradiation, and thereby the solar gain.
Furthermore, the position of the sun a↵ects the solar gain due
to possible shading objects around the collectors. It is common
for the collector rows to cast shade on one another at some point
in the afternoon as well. Finally, dirt or snow on the panels may
a↵ect the solar gain.

The most recent standard for performance testing of solar
heat collectors by the International Organization for Stan-
dardization (ISO) is described in ISO 9806:2017 (European
Committee for Standardization (CEN) Technical Committee,
2017). The method is considered to be the state-of-the-art for
solar collector modelling (Kicsiny, 2014). The solar gain is
included in the ISO dynamic model as

�sol = ⌘K(✓) It , (3)

where It is the total radiation in the collector plane. The param-
eter ⌘ (usually named F

′(⌧↵)en in this application) represents
the fraction of solar irradiation that is absorbed by the panels at
an incidence angle equal to zero, whereas the incidence angle
modifier (IAM) K(✓) accounts for incidence angle dependence
of the solar gain. The incidence angle ✓ is defined as the angle
between the sunbeam and the normal of the collector plane.
When beam and di↵use irradiation are measured separately and
an incidence angle modifier is used, the solar gain is modelled
as

�sol = ⌘ (Kb(✓) Ib + Kd Id) , (4)

where the di↵use IAM Kd is a constant, as it is independent of
the incidence angle.

The standard incidence angle modifier (IAM) used in the ISO
performance test is

Kb(✓) = 1 − b0 � 1
cos(✓) − 1� . (5)

Depending on the applied model type, the parameter b0 that
determines the slope of the curve is manually tuned or fitted to
data using statistical techniques. For most flat plate collectors,
this equation is considered su�ciently accurate for describing
incidence angle e↵ects (Perers, 1997).

Another IAM given in ISO 9806:2017 is the Ambrosetti

function

Kb(✓) = 1 − tan � ✓
2
� . (6)

In this case, the dimensionless parameter  determines the slope
of the function.

Almost all models intended for control of SHPs present in the
scientific literature combine (partial) di↵erential equations with
parameters estimated from data, see for example Pasamontes
et al. (2013) and de Andrade et al. (2015). The incidence
angle dependence is either neglected, or modelled using IAM
functions such as in Eq. (5) and (6). The vast majority of
existing models for SHP control do not take shadowing e↵ects
into account (Bava, 2017; Bava and Furbo, 2018).

Although these IAM functions may su�ce for performance
testing and simulation, they may not be accurate enough for

control purposes. The functions used currently are tuned by
a single parameter and therefore only a limited amount of
function shapes are possible. Furthermore, the functions do
not allow for asymmetric diurnal variations of e�ciency, which
may exist due to shading of the collectors.

1.3. Motivation

This paper aims to formulate and test a novel non-parametric
method to estimate the solar heat gain in thermal dynamical
systems such as buildings and solar collector fields. To the
best of our knowledge, and as seen in the literature review, only
simple data-driven methods for modelling solar gain in build-
ings exist, i.e. models in which the solar gain is independent of
the sun position. For solar collectors, parametric incident angle
modifiers (IAM) have been widely applied in the literature, in
both steady-state and dynamic models. However, these IAMs
are not able to account for potential shading patterns on the
collectors.

As the relationship between solar gain and measured solar
irradiation is sun position dependent and site-specific, it is
often not feasible to choose a parametric representation of this
relationship. In addition, the solar gain factor, i.e. the share
of measured solar irradiation that is absorbed in the system,
depends on the sun position non-linearly.

Spline functions address both of these issues. A key benefit
of this non-parametric modelling technique is that no model
structure needs to be specified. Furthermore, the splines can
model non-linear phenomena, but the nonlinear operations in
the construction of basis splines are performed before the model
fitting process. Hence, only linear operations on the constructed
basis splines are carried out in the model fitting procedure, as
will be demonstrated later.

This study implements and tests the spline-based solar gain
factor in a grey-box model setting. Grey-box models are a class
of parametric physics-based statistical models, which in form
lie between the deterministic white-box models known from
simulation tools such as TRNSYS, and entirely data-driven
black-box models such as simple linear regression and neural
networks. Grey-box models are often relatively simple and
computationally lightweight, they have excellent forecasting
properties, and parameters that are directly related to physical
properties.

In Section 2 the proposed method is discussed, including
the mathematics behind the applied B-spline functions (Section
2.1), the applied grey-box model (Section 2.2), and the actual
implementation of splines in state-space models (Section 2.3).
In Section 3 the approach is applied to two use cases: modelling
the e↵ect of solar irradiation on the internal temperature of a
dwelling in Aalborg, Denmark (Section 3.1), and forecasting
the heat production from a solar collector field in the munici-
pality of Solrød, Denmark (Section 3.2). Lastly, in Section 4,
the approach is discussed and closing conclusions are drawn in
Section 5.
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2. Method

This section presents the used modelling procedure, which is
also outlined in Figure 1. First, Section 2.1 introduces spline
functions and the construction and usage of a B-spline basis for
data fitting, corresponding to the first step in Figure 1. Next,
Section 2.2 presents the resistance-capacity grey-box models
and model selection procedure used in this article, which span
all remaining steps in Figure 1. Finally, Section 2.3 discusses in
detail how the spline functions are implemented in the grey-box
model setting in particular.

Define base model and its extensions

Perform LRT on all extensions 

Select most significant model extension
and set as current model

Fit base model and set
as current model

Any significant extension?

End model selection

Compute basis splines as
function of azimuth angles

Fit all extensions of current model

NoYes

Figure 1: Modelling procedure.

2.1. Splines

Splines are piece-wise polynomials that are continuously
di↵erentiable up to a certain order. The points at which these
piece-wise polynomials connect are called knots. Splines are
in practice used for interpolation, smoothing, and function
approximation (de Boor, 2007). This paper concerns the latter
challenge, and aims to estimate the solar gain factor from data
as a smooth function.

Splines are attractive for function approximation due to
several properties. The functions are smooth up to a certain
order, have compact support, and their formulas are explicit and
rather simple (Prautzsch et al., 2002; Christensen, 2010).

The proposed method is based on a specific type of spline
function: the B-spline. Given a knot sequence, one can
construct a set of B-splines that form a basis for all splines
with this same knot sequence (de Boor, 2007; Prautzsch et al.,
2002). The construction of the cardinal B-spline basis will be
discussed in Section 2.1.1, and in Section 2.1.2 a more general
construction of B-splines is shown.

2.1.1. Cardinal B-splines

The B-spline Bm(x) is a piece-wise polynomial of order m,
meaning that the spline consists of m polynomials of degree
m − 1. A transition point from one polynomial to the next is
called a knot. If the knot sequence is uniformly spaced, it is
called a cardinal B-spline or a cardinal basis spline.

The cardinal B-spline can be defined and constructed in
various ways. A compact definition is the recursive convolution
relation, first shown by Schoenberg (1946),

Bm+1(x) = (Bm ∗ B1)(x), x ∈ R , (7)

where ∗ is the convolution operator m ∈ N and B1 is defined by
the characteristic function

B1(x) =
�������

1 if 0 ≤ x < 1
0 otherwise.

(8)

The B-spline has a number of desirable properties, one of
which is continuity of the 0th to (m − 2)th derivatives in the
knots, i.e. Bm ∈ Cm−2 (Sauer, 2006). For example, the B-
spline of order m = 4 is a piece-wise polynomial, each of these
polynomials is of third degree, and the function value, slope and
curvature are continuous in each knot.

Another property is that infinitely many cardinal B-splines
point-wise add up to unity, when evenly distributed along the
x-axis with a distance corresponding to the distance between
two neighbouring knots (Christensen, 2010).

As demonstrated later, the B-splines are suitable for estimat-
ing the solar gain factor as a smooth function of sun position.
The estimated function is obtained by summing the scaled B-
splines. In many use cases, one is only interested in a series of
B-splines that covers a finite range of the x-axis. However, the
sum of a finite set of cardinal B-splines will go to zero at the
boundary regions as seen in Figure 2A. Therefore, the cardinal
B-splines near the boundaries need to be modified to add up
to unity for the entire finite domain. The following section
illustrates this modification of the B-splines.

2.1.2. B-splines in a Finite Domain

For a strictly increasing series of knots x1, x2, x3, . . . , it is
possible to define the i

th B-spline of order m, Bi,m(x), in Eq. (7)
by the alternative Cox-de Boor recursion formula,

Bi,m(x) = x − xi

xi+m − xi

Bi,m−1(x) + xi+m+1 − x

xi+m+1 − xi+1
Bi+1,m−1(x) . (9)

The Cox-de Boor recursion formula can be used to define B-
splines with non-uniform knot distances and to shift the B-
spline along the x-axis. The above criterion is relaxed from
strictly increasing to non-decreasing knots, so that knots may
be positioned at equal locations. In order to still use Eq. (9) in
this generalised case, division by zero is considered as zero.

If the first m knots of the knot sequence x1, x2, x3, . . . are
equal, i.e. x1 = x2 = ⋅ ⋅ ⋅ = xm, and the same holds for the last
m knots of the knot sequence, then the B-splines as defined in
Eq. (9) will add up to unity on the finite domain. The leftmost
B-spline will have have m coinciding knots, the second leftmost
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Figure 2: Positioning of B-splines on a finite domain, and a spline function fitted to data. In A a series of cardinal basis splines and their sum is shown. In each of
the proceeding figures one new basis spline is added on the left, so that knots accumulate at knot position 1. The knots of the leftmost basis spline, B1,4(x), in B
are x = {1, 1, 2, 3, 4}, and finally in D the knots are x = {1, 1, 1, 1, 2}. In E the basis splines are scaled such that the resulting cubic spline fits a given set of data.

B-spline will have m−1 coinciding knots, etc. The resulting set
of B-splines has the same properties as the cardinal B-splines,
except that continuity is reduced in the coinciding knots to
Cm−n, where n is the number of coinciding knots.

Figures 2A-D illustrate how the basis splines change shape
as more knots are coinciding and eventually how the resulting
spline S(x) adds up to unity on the finite domain.

2.1.3. Data Fitting with Splines

The property that the B-spline series sums up to unity for the
entire range of interest is especially useful for data fitting. By
scaling and summing the individual B-splines as in Eq. (10),
the spline function S(x) is obtained:

S(x) = q�
i=1
�iBi,m(x) , (10)

where �i is the scaling factor (and model parameter) of the i
th

B-spline. Typically linear (m = 2), quadratic (m = 3), or cubic
(m = 4) splines are used.

Figure 2E illustrates how it is possible to fit a spline to a
certain data set by scaling the individual basis splines. By
utilising the modified boundary basis spline as described in the
previous section, it is possible to estimate a nonzero value at
the left and right side of the spline domain. Section 2.3 will
further discuss the implementation of the spline function S(x)
in a grey-box setting.

2.2. Grey-box Models

Grey-box models are mathematical representations of a phys-
ical system that is described by a number of inputs, outputs and
state variables. The state variables are described by first order
di↵erential or di↵erence equations for continuous and discrete
time, respectively. This paper focuses on grey-box models with
states in continuous time and observations in discrete time.

In a grey-box model, a noise term is added to the—otherwise
deterministic—white-box model. The stochastic nature of these
models furthermore allows for the application of statistical
methods for structural model identification, such as the like-
lihood ratio test.

A grey-box model consists of a series of stochastic dif-
ferential equations (the system equations) and one or more
observation equations. The grey-box model in the form used
in this article, namely the state-space form, is written

dxt =Axtdt + Butdt +�d!t (11)
y

tk
=Cxtk

+ ✏ tk
. (12)

In the above equations xt is the state vector, y
tk

is the observed
output vector, A is the transition matrix, B is the input matrix,
C is the output matrix, ut is the input vector, t is the time, k

is the number of the discrete time step, ✏ is the measurement
noise, and finally !t is a vector of Wiener processes. The
measurement error vector ✏ tk

∼ N(0,�obs) is assumed to be
i.i.d., and !t and ✏ tk

are assumed independent.
Further theory on stochastic di↵erentiation and integration

can be found in for example (Kloeden et al., 1994) and (Za-
stawniak and Brzezniak, 1998). For the purposes of this paper,
a basic knowledge of random variables su�ces.

2.2.1. Model Selection Procedure

In order to choose the optimal number of B-splines to ap-
proximate a functional relationship present in the data, several
possibilities are implemented and compared. For cubic splines
with intercept, the minimum number of splines is 4. The
maximum is kept at 12, which typically is su�cient for the
specific modelling purposes.

Forward model selection is used, in which a simple model
is iteratively extended. The procedure is visualised in Figure
1. In each iteration, the most significant model extension
is selected using the likelihood ratio test (LRT), a statistical
test providing a p-value that expresses the significance of the
extension (Madsen and Thyregod, 2010). The model selection
ends when no extension is significant. A significance level of
0.05 is used throughout the model selection. The likelihood
ratio test is also used to determine the optimal number of B-
splines in each model extension.

2.3. Implementing Splines in State-space Models

Figure 2E visualised how a set of basis splines is scaled such
that the resulting spline fits a certain data set. For the case of
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modelling the solar gain in a given energy system, the exact
same approach can be used.

The position of the sun is uniquely defined by the solar
azimuth angle, �, and the sun elevation, ↵, which can be
determined from latitude, longitude and time. This paper deals
with the solar gain factor as a function of the azimuth angle
only. This is a valid assumption for su�ciently short time
periods during which the sun elevation corresponding to each
azimuth angle is approximately constant over the days included
in the data.

In the following, the spline-based approach is described for
modelling solar gain in a resistance-capacity (RC) grey-box
model. Only cubic B-splines with equidistant knots are used
here. When the data set covers all times between sunset and
sunrise, the boundary knots are placed at these two moments.
Otherwise the boundary knots are placed at the extremes of the
azimuth angle present in the data.

The solar heat gain �sol in an RC model can be expressed
by multiplying the solar gain factor and the outdoor solar
irradiation measured in a certain plane as shown in Eq. (1),
(3), and (4). To include azimuth angle dependence of the solar
gain, the solar gain factor is substituted with the spline,

�sol =
�������
⌘(�) I = ∑q

i=1 �iBi,m(�) I for ↵ > 0°
0 for ↵ ≤ 0° .

(13)

One needs to specify a sequence of knots in any sub-interval of
� ∈ [0°, 360°), where � is the azimuth angle of the sun. This
sub-interval will typically include the azimuth angles between
sunrise and sunset. Thereby the functional representation of the
solar gain �sol is obtained as in Eq. (13), where ↵ is the sun
elevation, and I is the solar irradiation. The knots are defined
as described in Section 2.1.2 to ensure that the spline curve can
take any value for the entire chosen sub-interval. Depending on
the complexity of the shadow pattern over the day, the number
of base splines can be adjusted.

The basis splines Bi,m(�) are uniquely defined by the knot
sequence and the azimuth angle time series. Therefore, the
basis splines can be constructed before model fitting, as seen
in the first step of Figure 1.

Assuming that the solar radiation only a↵ects the first state,
the stochastic di↵erential equations on state-space form in Eq.
(11) can be written as:

dxt = Axtdt + But�
B1u1,t + B2u2,t

dt +�d!t , where

B1 = 1
C

����������

�1 �2 � �q

0 0 � 0
⋮ ⋮ � ⋮
0 0 � 0

����������
p×q

u1,t =
����������

B1,m(�t) It

B2,m(�t) It⋮
Bq,m(�t) It

����������
q

B2u2,t ∶ Second input matrix, B2 ∈ Rp×r, and its
associated input vector, u2,t ∈ Rr, excluding
solar gains.

(14)

In Eq. (14), p is the number of states, q is the number of basis
splines used to model the solar gain, r is the number of inputs

ADIABATIC WALL

ADIABATIC WALL

• TaTi •
Tw

�heat

�sol

3.2 m2

4.8 m2

2.7 m2

Tm
Th

N

•

•

•

Figure 3: Floor plan of the modelled apartment including temperature nodes,
modelled heat gains, window areas and orientation.

excluding solar irradiation, �i is the scaling factor of the i
th basis

spline, Bi,m(�t), C is the heat capacity of the temperature node
to which the solar gain is assigned, and It is a time series of the
measured outdoor solar irradiation. Finally, A ∈ Rp×p, is the
transition matrix and x ∈ Rp is the state vector.

Note that the matrix B1 can be modified to make the solar
gain a↵ect more than one state, however, for simplicity of the
formulations this is not done here.

3. Case Study

This Section describes the implementation of the spline-
based approach for solar gain modelling of two dynamical
thermal systems. In the first case (Section 3.1), the splines are
included in a model of the heat dynamics of a single apartment.
In the second case (Section 3.2), splines are applied to model
the solar gain in a solar collector field.

In the following sections the used data and applied models
are described for each case, along with results of the model
selection procedure.

All models are formulated and fitted with use of the package
ctsmr (Continuous Time Stochastic Modelling for R, version
0.6.17) (Juhl, 2013), which uses a Kalman filter and maximum
likelihood methods for parameter estimation. The B-spline
basis functions are generated with use of the R-core package
splines (version 3.5.1) (R Core Team, 2017).

3.1. Modelling the Thermal Dynamics of a Building

In this case study, the physical parameters of a building, such
as heat loss coe�cients, heat capacities, and time constants,
were estimated. The following sections show how the models
improve when the solar gain is modelled with splines. This
semi-parametric model allows the estimation of the azimuth-
dependent solar gain factor and the resulting solar gain.

3.1.1. Data

During the period from February 13 to April 1, 2018,
measurements were obtained from a two-room apartment in
Aalborg, Denmark. The apartment consists of an open kitchen
and living room, a bedroom, a bathroom, a small corridor, and
a heated weather porch. The apartment has a gross floor area
of 67 m2 and a total window area of 10.7 m2. Similar heated
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apartments are located on the north side, south side, and above
the apartment. An unconditioned basement is located below the
apartment. The floor plan of the apartment is shown in Figure
3, including window sizes and the physical parameters used for
modelling.

The total space heating of the apartment was measured every
15 minutes, and the air temperature in eight locations in the
apartment was measured every 5 minutes. The internal temper-
ature used in the model was the arithmetic mean temperature of
all eight sensors in each time step.

In addition to the heating power �heat (kW) and the internal
temperature Ti (○C), the outdoor ambient temperature Ta (○C)
and the global solar irradiation Ig (kW�m2), were measured
every minute at Aalborg University, 2.6 km away. All measure-
ments were re-sampled to hourly values by averaging. A subset
of the data is plotted in Figure 4.
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Figure 4: Three out of 47 days of measurements (February 13 to April 1, 2018)
for dynamical building model estimation: ambient temperature, space heating,
global solar irradiation, and internal temperature.

3.1.2. Models

The model that all the other models originate from is the
single-state model Ti as given by

Ti

�������
dTi = 1

Ci
� Ta−Ti

Rw
+�heat + ⌘Ig�dt +�id!i

T
∗
i = Ti + ✏ . (15)

Note that the time indices shown in e.g. Eq. (11) and (12) are
omitted for simplicity.

In the model above, the only state is the internal temperature
Ti, as indicated by the model name. The Ci, Rw, ⌘, �i

and the variance of ✏ are model parameters which are to be
estimated. Ta, �heat and Ig are model inputs, and T

∗
i is the

observed internal temperature. For further specification, see the
Nomenclature.

All models include the state variables in their names. The
temperature of an internal thermal mass, the heating system,

and the exterior wall/building envelope are represented by Tm,
Th, and Tw, respectively. Finally, the postfix Sq indicates that
the solar gain is modelled by a cubic spline with q basis spline.

For illustrative purposes Eq. (16) presents a model with
two states: the internal temperature Ti, and the hidden state
temperature of the building envelope Tw. The inputs of model
TiTw are the ambient temperature Ta, space heating �heat, and
global irradiation Ig.

TiTw

���������������

dTi = 1
Ci
� Tw−Ti

Rwi
+�heat + ⌘Ig�dt +�id!i

dTw = 1
Cw
� Ti−Tw

Rwi
+ Ta−Tw

Rwa
�dt +�wd!w

T
∗
i = Ti + ✏

(16)

To convert a model with constant solar gain factor, ⌘, to
a model with azimuth-dependent solar gain factor, ⌘(�),the
spline function in Eq. (10) is substituted by

⌘ = ⌘(�) = q�
i=1
�iBi,m(�) (17)

The solar gain (�sol = ⌘Ig) is assigned to a single state, namely
the internal temperature node Ti, for all fitted models.

3.1.3. Results
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Model∶ Ti
log L=5087.4(prm=6)

TiTm
NA(10) TiTh

4348.7(10) TiTw
5476.0(10)

TiTw
5476.0(10)

TiTw S5
5545.6(14) �� TiTw S10

5560.3(19) TiTw S11
5561.6(20) TiTw S12

5561.0(21)
Figure 5: Forward model selection framework for dynamical building mod-
elling. For each model the log-likelihood (log L) and the number of parameters
(prm) are shown. One model did not converge, indicated by the log-likelihood
of NA.

Figure 5 shows the model selection framework and the result
of the model selection. The diagram shows that the simplest
model Ti is first extended with a hidden state without use of
solar splines (row 2). In this case, the model TiTw was found
to be the best model. No more than one hidden state has been
tested, to avoid potential structural identifiability issues. After
the model was fitted, it was extended further by introducing
splines to estimate the azimuth-dependent solar gain factor.
This is shown in the lower part of the figure.

All the spline models with five or more basis splines (except
the models with eight and nine, which did not converge)
outperform the null model TiTw. However, no statistically
significant improvement was found when more than ten basis
splines were used for this particular data set.

The likelihood ratio test between the null model TiTw and the
alternative model TiTw S10 reveals a p-value of less than 2.2e ⋅
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10−16, which clearly shows a significant improvement obtained
by the alternative model. The best model was therefore found to
be the two-state model TiTw S10, with a cubic spline describing
the solar gain based on ten basis splines.
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Figure 6: The top figure compares the constant solar gain factor from model
TiTw and the sun position dependent solar gain factor from model TiTw S10.
The bottom figure shows the resulting median and quantiles of the solar gain for
model TiTw S10 with 12.5 percentage point increments (0.0, 12.5, 25.0, 37.5,
62.5, 75.0, 87.5, 100.0 %).

Figure 6 shows the estimated solar gain factor of model TiTw
and TiTw S10. In the azimuth interval from 110° to 260°, two
distinct peaks in the solar gain factor from model TiTw S10 and
a flat insignificant section in-between can be seen. This is in
agreement with the apartment layout as it has windows towards
the east and west, as seen in Figure 3.

It is noted that solar gain factor for the morning hours
(azimuth angle from 100° to 110°) is rather high and oscillates.
As the solar irradiation intensity is low in this period of the
day it is expected that the scaling factor of the basis spline
is di�cult to estimate. Furthermore, the confidence band is
underestimated, as the scaling factor in this region is reaching
the upper parameter search boundary. However, due to the low
irradiation intensity, the e↵ect on the model states is limited as
well. This is seen in the general low solar gain levels in the
interval from 100° to 110°, in the lower plot in Figure 6.

3.2. Forecasting Solar Heat Generation

In the second use case, the aim was to predict the return
(outlet) temperature of a solar heat field. As the solar irradiation
has a dominant influence on this variable, it can be expected
that accurate modelling of shading patterns improves the model
performance significantly.

3.2.1. Data

Measurements were collected at the Aalborg CSP Solar Heat
Plant in Solrød Municipality between May 23, 2017 and May
31, 2017. The total panel area is 2569 m2, which yields around
1300 MWh annually with a peak power of 1.9 MW, serving a
community of 350 households. A schematic overview of the
site and measurements are shown in Figure 7. The following
measured inputs were used: total solar irradiation in collector
plane It, fluid flow per panel surface area Qf , fluid supply and
return temperature Ts and Tr, and ambient temperature Ta. The
solar azimuth angle was computed from the longitude, latitude,
and time. In Figure 7, note the trees located west of the
collectors, which shade (part of) the field in the afternoon.

•

•

•

QfTr

Ts

Qf

It Solar collector field

Shading from trees

TaN

Figure 7: Schematic setup of solar collector field and surrounding trees,
including used measurements.

A subset of the measurements is depicted in Figure 8. The
values were 1 minute averages of measurements taken every
second. A control of the return temperature had already been
implemented at the time of data collection, which limited the
variation in measured return temperature, Tr.

A subset of the data was selected for parameter estimation.
Periods of low or zero flow were excluded, as well as data
points with large incidence angle ✓, such that cos(✓) < 0.2 (i.e.
✓ > 78.5°). Finally, some periods in which the plant switches
back and forth from preheating to operating were removed.
This results in a data set with gaps and a varying number of
measurements per day, including days with clear sky and days
with intermittent cloud cover. This is, however, not a problem
in the grey-box model setup.

3.2.2. Models

An initial stochastic state-space model was taken from
Bacher et al. (2011), whose model in turn derives from Perers
(1997). An extended form of the heat balance proposed by the
latter is used in the current ISO standard for quasi-dynamic test-
ing (European Committee for Standardization (CEN) Technical
Committee, 2017). The resulting state-space formulation for
the base model Tr is

Tr

�������
dTr = Ufa(Ta−Tf)+⌘It+cf Qf(Ts−Tr)(mC)e

dt +�rd!r

T
∗
r = Tr + ✏ . (18)
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Figure 8: Three out of nine days of measurements (May 24–26, 2017) used
for fitting the solar collector field model: supply and return temperature (top),
ambient temperature (middle), and total irradiation (bottom).

The modelled quantity is the return temperature Tr. The
measured inputs are Ta, Qf , Ts, and It. The variable Tf is
the average of supply and return temperature. The factor cf
is a given constant, whereas (mC)e, Ufa, ⌘, �f and �obs are
parameters to be estimated. The exact specification of the
variables can be seen in the nomenclature.

Four extensions of the base model Tr were considered, which
all add detail to modelling the e↵ect of solar irradiation. One
extension was the splined solar gain factor, which is indicated
by Sq in the model name, where q is the number of splines. In
addition, two di↵erent IAM functions were implemented. The
model name includes IAM for the standard function as given
in Eq. (5), and IAMa for the Ambrosetti IAM from Eq. (6).
Finally, the total irradiation was split into direct and di↵use
components, using the method proposed by Ruiz-Arias et al.
(2010). Models including this irradiation split contain Isplit in
their names. All applied models lump the field into a single
compartment with one corresponding state variable, the return
temperature Tr.

All extensions were applied to the base model in an iterative
manner that is visualised in Figure 9. In each iteration, the
model was extended in several ways, one extended model for
each of the remaining extensions. The extension with the lowest
p-value were selected, and the procedure was repeated until no
extensions were significant or all extensions were implemented.

Note that in cases of the split radiation being combined with
the splined solar gain factor ⌘(�), the solar gain was modelled

di↵erently to Eq. (4) to ensure identifiability. Instead, it was
given by

�sol = ⌘(�)Kb(✓) Ib + Kd Id , (19)

where Kb(✓) = 1 in case where the model did not include an
IAM.

3.2.3. Results

Fo
rw

ar
d

se
le

ct
io

n

Model∶ Tr
log L=−2125(prm=6)

Tr IAM−1923(7) Tr IAMa−1896(7) Tr Isplit−2077(7) Tr S8−1583(13)

Tr S8−1583(13)

Tr S8 IAMa−1583(14)Tr S8 IAM−1599(14) Tr S8 Isplit−1409(14)

Tr S8 Isplit−1409(14)

Tr S8 Isplit IAM−1393(15) Tr S8 Isplit IAMa−1396(15)
Figure 9: Forward selection framework for solar heat field model. For each
model the log-likelihood (log L) and the number of parameters (prm) are shown.
Among the spline models (Tr S8, Tr S8 Isplit, etc.), only the best model is
shown in the diagram, however, models with four to eight basis splines were
tested.

In the first model extension, the spline was the most signif-
icant improvement to the model, in particular Tr S8. The next
selection round included the radiation split to the model, where
again the version with eight basis splines was most significant.
Finally, the model was extended with one of the IAM functions,
again with eight basis splines. The model selection ended here,
as all extensions considered were accepted. Note that the final
model includes both a state-of-the-art Amrbrosetti incidence
angle modifier and spline functions, which together model the
sun-position dependence of the solar gain factor. This result
shows that several solar gain modelling components can be
combined and in this way complement each other.

The combined e↵ect of the IAM, split radiation, and spline
functions on the estimated solar gain factor for the (estimated)
direct radiation is shown as a function of azimuth angle in
Figure 10. The models have di↵erent estimated heat capacities(mC)e, which scale the functions to di↵erent maximum values.
In order to compare the possible function shapes of the solar
gain factor function that the di↵erent models provide, for this
plot the functions were scaled to a common maximum value
of 1. The spline-based solar gain factor decreases faster in the
afternoon (azimuth angle from 225° to 280°), which indicates
that the e↵ect of the shading forest is captured in these models,
but not in the state-of-the-art model.

Model performance was compared using prediction with
perfect forecasts of the inputs, that is, using the actual measure-
ments as inputs. Figure 11 shows how the model predictions
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Ambrosetti IAM with the spline functions. For comparison, all functions are
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improved due to the added solar gain function. Note that
all models, including the final model, overestimate the return
temperature at the end of the day due to a measurement error
in the ambient temperature. The measurement error occurs
due to exposure of the sensor to direct sunlight. This could
be accounted for in future improvements of the model, but is
outside the scope of this article.

Figure 11A compares the residuals of two of the base model
extensions, Tr IAM and the selected Tr S8. It is clear that the
spline-based model is able to account for shading, and thereby
reduces structural prediction errors that were present when
modelling incidence angle e↵ects with an IAM only. Figure
11B shows improvements in the residuals after the final model
extension from Tr S8 Isplit to Tr S8 Isplit IAM. The improve-
ment was less pronounced than in 11A, but it can be seen that
the residuals in the late afternoon were slightly improved by
including the IAM. The remaining error in the late afternoon is
explained by the ambient temperature measurement error.

With each model extension, the time of day from which
the model starts overestimating the return temperature is post-
poned. As one might expect, the improvements are less
pronounced on cloudy days than on sunny days as plotted here,
but still present.

4. Discussion

First of all, it is noted that although the splined solar gain
factor was applied in grey-box models here, the used of the
method is not limited to this model type. The B-splines can
also be used in other models in which the parameters are fitted
from data, such as linear regressions.

In the present article, the splined solar gain factor only
a↵ected a single state in the state-space models. It is however a
simple adaptation to assign the solar gain to the system in more
complex ways, e.g. by assigning it to more than one state.

While only equidistant spline knot sequences are used in this
article, the location of the knots can perhaps be optimised by
concentrating more knots around azimuth angles for which fast
changes in the shading pattern occur. One should in this case be
aware of potential overfitting when spline knots are placed too

closely together, as the individual basis splines would be fitted
to fewer data points.

When using longer periods of measurements covering several
months, there will be a larger range of sun elevations associated
with a single azimuth angle. As the elevation also a↵ects
shading patterns and the incidence angle, one may need to
account for this as well. This can be solved in several ways.
First, an additional spline curve can be introduced to account
for the sun elevation variation of the solar gain factor. The
downside of this approach is that it requires significant amounts
of data to estimate the splines and adds parameters to the model.
This will increase the computation time and may even result in
an unidentifiable model.

A more convenient approach than introducing a second
spline curve is to apply an adaptive model in which parameters
are allowed to change over time. One example of adaptive time-
varying parameters estimation is presented by Joensen et al.
(2000). In that way the scaling factors of the B-splines will
be specific to shorter time periods of data, so that the azimuth
angle again largely determines the shading pattern within this
time period.

An important note regarding the estimated spline curve is that
its physical interpretation is not always straightforward. The
splines may account for other e↵ects than solar irradiation such
as systematic use patterns (heat gain from people, computers
etc.) or systematic measurement errors. These concerns are
mostly relevant for climates or measurement periods with low
daily variation in solar irradiation, i.e. climates and periods
with mainly clear sky conditions.

Finally, it should be noted that it can be di�cult to estimate
the scaling factors for periods with low solar irradiation, e.g.
close to sunrise and sunset. This may be prevented by placing
the boundary knots closer towards the south, and fitting a
constant or linear solar gain factor to the periods outside these
bounds.

5. Conclusion

Modelling solar gain is of crucial importance for energy
system models. This paper shows that the approaches for solar
gain modelling in the literature can be improved significantly
by taking the position of the sun into account when modelling
the thermal dynamics of an apartment and a solar collector field.

This paper has proposed B-splines as a non-parametric
method to estimate the relation between measured solar irra-
diation and the solar gain. In two case studies, this method was
implemented and tested in grey-box models that included the
solar gain as a function of the azimuth angle. This function is
estimated using coe�cients on a B-spline basis. The splines
have been used on the global, total, and beam irradiation in
di↵erent model versions.

A two-state model of an apartment was improved signifi-
cantly by estimating the solar gain factor with use of a diurnal
spline factor instead of the commonly used constant solar gain
factor. The estimated solar gain curve showed good agreement
with the authors expectations for the specific apartment with
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Figure 11: One-step prediction residuals of the return temperature on a sunny day. Panel A shows a comparison between two extensions of the base model: spline-
based model (Tr S8) and current state-of-the-art model (Tr IAM). In B we compare residuals of a more complex model that applies splines only Tr S8 Isplit to
its extension Tr S8 Isplit IAM), which combines the splines and the Ambrosetti IAM. Panel C and D show measured ambient temperature and measured total
irradiation in the plane of the collectors, respectively.

east- and west-facing windows, as the peak in solar gain
occurred during morning and evening.

For a return temperature model of a solar collector field,
it has been shown that the splines account for local shading
patterns caused by the panels themselves and trees next to the
field, while also accounting for incidence angle e↵ects. The
key di↵erence compared to the methods from ISO 9806:2017
and most models in the literature is that the spline-based solar
gain factor has a higher degree of freedom than frequently used
single-parameter incidence angle modifier (IAM) functions.
This makes it capable of accounting for site-specific shading
patterns, which largely reduced structural prediction errors.
In addition, the splines can be combined with standard IAM
functions to achieve even better results.
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H., 2017. On site characterisation of the overall heat loss coe�cient:
Comparison of di↵erent assessment methods by a blind validation exercise
on a round robin test box. Energy and Buildings 153, 179–189.

Ruiz-Arias, J., Alsamamra, H., Tovar-Pescador, J., Pozo-Vázquez, D., 2010.
Proposal of a regressive model for the hourly di↵use solar radiation under
all sky conditions. Energy Conversion and Management 51, 881–893.

Sauer, T., 2006. Numerical Analysis. Pearson.
Schoenberg, I. J., 1946. Contributions to the Problem of Approximation of

Equidistant Data by Analytic Functions. Quart. Appl. Math. 4, 45–99; 112–
141.

Socolow, R. H., 1977. The Twin Rivers Program on Energy Conservation in
Housing: Highlights and Conclusions*. Energy and Buildings 1 (3), 207–
242.

Zastawniak, T., Brzezniak, Z., 1998. Basic stochastic processes. Springer.
Zeifman, M., Roth, K., 2016. Residential remote energy performance as-

sessment: estimation of building thermal parameters using interval energy
consumption data. In: ACEEE Summer Study on Energy E�ciency in
Buildings. pp. 1–12.

12

84



Article

METHOD FOR SCALABLE AND AUTOMATISED
THERMAL BUILDING PERFORMANCE
DOCUMENTATION AND SCREENING
Christoffer Rasmussen 1* , Peder Bacher 1 , Davide Calì 1 , Henrik Aalborg Nielsen 2 and
Henrik Madsen 1

1 Department of Applied Mathematics and Computer Science, Technical University of Denmark,
2800 Kgs. Lyngby, Denmark

2 ENFOR A/S, Lyngsø Allé 3, 2970 Hørsholm, Denmark
* Correspondence: chrras@dtu.dk

Version May 29, 2020 submitted to Energies

Abstract: In Europe, more and more data on building energy use will be collected in the future as1

a result of the energy performance of buildings directive (EPBD), issued by the European Union.2

Moreover, both at European level and globally it became evident that the real energy performance of3

new buildings and the existing building stock needs to be documented better. Such documentation4

can, for example, be done with data-driven methods based on mathematics and statistical approaches.5

Even though the methods to extract energy performance characteristics of buildings are many,6

they are of varying reliability and often associated with a significant amount of human labour,7

making them hard to apply on a large scale. A classical approach to identifying certain thermal8

performance parameters is the energy signature method. In this study, an automatised, non-linear and9

smooth approach to the well-known energy signature is proposed, to quantify key thermal building10

performance parameters. The research specifically aims at describing the linear and non-linear heat11

usage dependency on outdoor temperature, wind and solar irradiation. To make the model scalable,12

we realised it so that it only needs the daily average heat use of buildings, the outdoor temperature,13

the wind speed, and the global solar irradiation. The results of applying the proposed method on heat14

consumption data from 16 different and randomly selected Danish occupied houses are analysed.15

Keywords: Thermal building performance; Energy documentation and screening; Energy signature;16

Occupants effect on heat consumption17

1. Introduction18

The energy efficiency directive (EED) of the European Union [1] states that all member states19

are responsible for installation of individual energy meters, including heat meters, on all buildings20

to the extend that it is technically possible and economically feasible. Furthermore, the new energy21

performance of buildings directive (EPBD) states a list of requirements which should boost a technical22

and economical national renovation strategy [2]. With the current data collection requirements and23

the new EPBD, the relevancy of data-driven methods for screening and documentation of the thermal24

performance of buildings become more relevant than ever.25

Several method for evaluating thermal energy performance of buildings exists. That being26

from pure deterministic white box models — as TRNSYS, Modelica or IDA ICE models — where27

building parameters are tuned such that the simulation output corresponds to the observations, to28

fully statistical black-box models. Typically a neural network, support vector machines, k-nearest29

neighbours algorithms, etc. are considered black-box approaches. The latter models are, however,30

Submitted to Energies, pages 1 – 19 www.mdpi.com/journal/energies

Preprint submitted to Energies

85



Version May 29, 2020 submitted to Energies 2 of 19

typically only used for prediction, control, and clustering as the internal dynamics are physically31

non-interpretable.32

A third category of models is grey-box models. This kind of models is a hybrid of the before33

mentioned white and black-box models. As the white and black-box models are the extremes of the34

model spectrum, examples of grey-box models are in the form of stochastic differential equations35

based on physics [3] to auto-regressive moving average model with exogenous inputs (ARMAX)36

for time series data [4]. The latter kind of models can be explained in physical terms, by first37

formulating a thermal lumped resistance-capacity (RC) model, and from that deriving an ARMAX or38

ARX representation, as done in e.g. [5,6].39

Other approaches in the literature includes time varying parameter estimation related to thermal40

building performance. In [7] each parameters of interest is treated as time varying states in a neural41

network, while an alternative approach based on multivariate kernel estimation for estimating time42

varying parameters is presented in [8].43

In general it can be said that the category of supervised machine learning techniques can be used44

for performance parameter estimation, prediction, and control, whereas unsupervised techniques are45

suitable for prediction and control only, as the inseparability is lacking.46

Common for most methods is that they require human interaction for model selection and47

validation. For large scale application they are therefore not feasible. There is in other words a need for48

methods which are robust, scalable, automatic and methods which only requires generally available49

data such as heat metering and weather data.50

1.1. Energy Signature Methods51

For a long time, energy signature models has been studied and applied in order to quantify the52

energy performance of buildings. A few of the early examples can be found in [9–11] with the earliest53

known, dated all the way back to 1951 [12].54

The dominant principle of the methods is to apply linear regression on e.g. outdoor temperature in55

order to explain the heat demand, and consequently extract information about heat transfer coefficient.56

In one of the simplest models [13], the heat consumption as a function of the outdoor temperature57

is described with a slope and an intercept in the heating period. During the weather independent period58

the heat consumption is modelled as a constant. The change points for the weather dependent period59

(heating period) to the weather independent period is described with a base outdoor temperature Tb060

at which the building is in thermal balance. For a fixed value of Tb0 , this is similar to the well-known61

degree-day method, see e.g. [14,15].62

In the ASHRAE Guideline 14-2002 – Measurement of Energy and Demand Savings [13] seven different63

energy signature models are proposed depending on different factors concerning if the building is64

equipped with heating, cooling, heat recovery or different combinations of such systems.65

Common for all the methods in the ASHRAE Guideline is that the heat usage is a function of the66

outdoor temperature alone, contrary to e.g. [10,16].67

In [16] it was found that the heat loss coefficient is fairly insensitive (±5 %) to solar gain and68

electricity use. The estimated base temperature were more sensitive to these two factors. Since both69

electricity and solar gain is an additive term to the heat demand (i.e. a functional offset), this seems70

like a reasonable finding.71

More recent studies like [17,18] shows that the energy signature method is still used in research.72

However, only minor advances on this technique have been reported since the earliest applications of73

the method.74

1.2. Motivation75

For all of the above energy signature methods, it is assumed that the transition from a weather76

dependent heat consumption to a weather independent heat consumption is instantaneous. However,77

this simplification does not match the reality. Hence, we propose an advancement of the traditional78
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energy signature models, by formulating it as a smooth non-linear model, from which the transition79

period can be determined. Furthermore, by reformulating the traditional energy signature model as a80

smooth, i.e. fully differentiable, model, the estimation procedure can be made more efficient and more81

advanced modelling approaches, which require full differentiability can be applied.82

Finally, it is well known that all models are wrong, but some are useful (quote by George E. P. Box). It83

is therefore such that the non-modelled effects on the heat consumption are part of the model errors.84

We utilise this fact to form a method to quantify the occupants’ effect on the heat consumption, based85

on the model residuals.86

The overall aim of this work is to establish a robust and scalable method for thermal energy87

performance estimation. The focus in this article is on buildings without secondary heat sources (e.g.88

wood stoves) and cooling systems, however, it would be possible to extend the model to include89

mechanical cooling.90

2. Method91

2.1. Heat Demand Formulation92

The energy signature models presented in the introduction all share a common feature. Namely
that the transition from one regime to the next happens instantaneously. The mathematical formulation
of a model for a building with heating only is thus, according to the e.g. ASHRAE Guideline [13],
expressed as:

Fheat = max( f (Ta, . . . ), g(Ta)) , (1)

where f (Ta, . . . ) is the heat consumption in the heating period as a function of the outdoor temperature93

and other potential explanatory variables, and g(Ta) = F0 is the constant heat consumption for periods94

outside the heating season.95

No matter which mathematical representation one use to model the heat demand in Equation96

(1), the function is not differentiable for all values of Ta as it has an instantaneous change point where97

f (Ta, . . . ) becomes g(Ta). Besides potential optimisation issues with a non-differentiable function,98

for example if the optimiser relies on automatic differentiation, a sudden change between the two99

regimes is a rough simplification for simple models like the energy signature which typically used100

daily averaged data. Instead we propose a smooth transition between the two regimes in Section 2.2.101

First, different formulations of f (Ta, . . . ) are proposed in Sections 2.1.1 and 2.1.2. Furthermore,
throughout this article g(Ta) is defined as a constant:

g(Ta) = F0 + # , (2)

where # is normal distributed noise with mean zero.102

2.1.1. Heating Degree Day Approach103

The simplest approach to model the total heat demand Ftotal of a building in the heating season is
by using the Fourier’s law on steady state form:

Ftotal = UA (Ti � Ta) + # , (3)

where UA is the heat loss coefficient, Ti and Ta are the in- and outdoor temperature, and # ⇠ N(0, s2)104

is the system and observation noise. Furthermore, Ftotal consists of space heating, internal heat gains,105

solar gain, heat transmission to surroundings and ventilation heat loss. For daily average values, the106

heat exchange with the internal thermal mass (e.g. exterior and interior walls or furniture) is assumed107

negligible.108
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Equation (3) can be rewritten as:

Ftotal = Fheat + Fx = UA (Ti � Ta) + # ) (4)

Fheat = UA (Ti � Ta)� Fx + #

= UA (Ti � FxUA�1 � Ta) + # )
M1: Fheat = UA (Tb0 � Ta) + # , (5)

where M1 refers to the model name, Fheat is the space heating and Fx is the remaining constant heat
gain which are not explicitly included in the model. Finally,

Tb0 = Ti �
Fx
UA

(6)

is the base temperature, i.e. the outdoor temperature at which the heat losses and gains are in109

balance, under the assumption that F0 is zero. Hence, for outdoor temperatures above Tb0 , the heat110

consumption is independent of the weather conditions.111

Note: Fx is the remaining heat gains which are not explicitly included in the model. It will therefore change112

from model to model as it depends on the included heat gains and heat losses.113

As many heat gains are infeasible to measure; the indoor temperature often is not readily available;114

and because a representative indoor temperature is not trivial to measure, Tb0 = Ti � FxUA�1 can be115

fixed or estimated as a constant.116

It should be noticed that Tb0 ! Ti for UA ! • and/or Fx ! 0. Hence, Tb0 will approach Ti for117

poorly insulated buildings with small internal and external heat gains.118

For daily averaged input values and a fixed value of the base temperature, Equation (5) can be119

directly related to the commonly known heating degree days (HDD) method, as HDD = Tb0 � Ta.120

Often a base temperature is given in the building codes or by other national or regional institutions.
In Denmark the base temperature is 17 �C [19]. Using the Danish standard base temperature, Equation
(5) becomes:

M0: Fheat = UA (Tb0 � Ta) + # = UA (17 �C +
F0
UA

� Ta) + # . (7)

2.1.2. Model Extensions121

The model in (5) simply assumes that the heat balance is solely a function of the temperature122

difference between in- and outside. The solar irradiation, the heat convection of the envelope, the123

air exchange of the building with the outside, and the outgoing long-wave radiation are therefore124

indirectly assumed constant (not considered in the model). Hence, the estimated UA values with the125

simplistic model results in weather biased parameters estimates. For example, for a particular windy126

and cold heating season, the UA value will be overestimated by applying Equation (5). Likewise, a127

sunny transition period between the weather dependent and weather independent season results in an128

overestimated UA value. The model definition is therefore not reliable for estimating thermophysical129

parameters of buildings [10].130

In the following sections, a number of model extensions is proposed to overcome this weather131

related bias.132

Convection and Infiltration133

Wind has two main effects on the heat consumption. Increased wind will increase the external134

convection on the building facade and the infiltration rate — i.e. the unintended air exchange between135

inside and outside. Moreover, the infiltration dependence on both wind speed and thermal stack136

effects. The literature provide several empirical formulas for describing the convection and infiltration,137

see for example [10,20].138
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For simple steady state models like those presented here, we aim for a simplified formulation
for the combined wind effect on the heat consumption. Hence, we propose that the convection and
infiltration due to increased wind speed can be treated as proportional to the temperature difference
between in- and outside. Equation (5) can then be extended to:

Fheat = (UA0 + Ws UAW) (Ti � Ta)� Fx + #

= (UA0 + Ws UAW) (Ti � Fx(UA0 + Ws UAW)�1 � Ta) + # ,
(8)

where Ws is the wind speed, UA0 is the heat loss coefficient for wind speeds equal to zero, and UAW
is the additional heat loss due to increments in the wind speed. As seen in the Equation (8), the
base temperature is now Ti � Fx(UA0 + Ws UAW)�1. In order to keep the model simple, the base
temperature is instead kept constant as in Equation (6), rather than wind speed dependent, as in
Equation (9),:

M2: Fheat = (UA0 + Ws UAW) (Tb0 � Ta) + # , (9)

which indirectly mean that Fx is equal to (UA0 + Ws UAW) (Ti � Tb0).139

Solar Radiation140

The solar gain Fsol can be characterised by the product of global solar irradiation Ig and a constant
solar transmission coefficient gA. The previous model from Equation (9) can therefore be extended
with an explicit solar gain term:

M3: Fheat = (UA0 + Ws UAW) (Tb0 � Ta)� gA Ig + #

= (UA0 + Ws UAW) (Tb0 � Ta)� Fsol + # .
(10)

As mentioned before, Fx (which is embedded in Tb0 = Ti � FxUA�1) represents the remaining141

heat gains and losses which are not explicitly modelled. Fx is therefore decreased compared to the142

previous models, as the solar gain now is modelled explicitly as gA Ig.143

If the gA value depend on e.g. time-of-year, the model can further be extended by modelling the144

functional relation between that and the solar gain similar to what is shown in [21]. That is however145

out of scope in this article.146

Thermal Radiation147

Another contribution to the total heat loss is the long wave radiation between the building surface148

and its surroundings.149

The long wave radiation heat loss to the sky Frad can be formulated as:

Frad = #A s(T4
sky � T

4
surf) , (11)

where #A is the emissivity of the building surfaces multiplied with projected exposed surface area,150

and s is the Stefan–Boltzmann constant. Tsky and Tsurf are the temperatures of the sky dome and of151

the building surface in kelvin, respectively [22].152

In order to keep the model simple and applicable, the unknown temperature of the outer envelope153

of the building is assumed to be equal to the ambient outdoor temperature Ta.154

Variations between Tsurf and Ta, as well as Tsurf and the actual surrounding radiant temperature155

are assumed constant.156
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The full model is now:

M4: Fheat = (UA0 + Ws UAW) (Tb0 � Ta)� Fsol + #A s(T4
sky � T

4
surf) + #

= (UA0 + Ws UAW) (Tb0 � Ta)� Fsol + Frad + # .
(12)

Notice that #A is a parameter while # is the noise term. They are therefore not related.157

2.2. Smooth maximum with LogSumExp158

In the following sections we explain the theory behind the smooth maximum function, LogSumExp159

as an alternative to the model in Equation (1), where f (·) is a model for the weather dependent heat160

consumption outlined above and g(·) is the weather independent heat consumption which in this case161

is as in Equation (2). Furthermore, we show how it can be applied, and how we use of the LogSumExp162

function to quantify the transition between two functions.163

2.2.1. Definition and Intuition of LogSumExp164

The LogSumExp (LSE) function is a smooth maximum approximation function often used in
machine learning and as activation function in artificial neural networks. It is defined as:

LSE(y) = LSE(y1, . . . , yn)

= log [exp(y1) + · · ·+ exp(yn)] .
(13)

In essence, the inner part of the log operator in Equation (13) amplifies the differences between
the individual values of y exponentially. For a large value of y, such as y1 � y2, ..., yn, we see that
Ân

i=1 exp(yi) ⇡ exp(y1). In order to get back to the original domain we take the logarithm of the sum.
In conclusion it can be said that Equation (13) approximates the maximum of the values in y:

LSE(y1, . . . , yn) ⇡ max(y1, . . . , yn) . (14)

2.2.2. Derivatives165

By applying the chain rule for differentiation, the partial derivative of Equation (13) can be shown
to be the softmax function,

∂

∂yi

LSE(y1, . . . , yn) =
exp(yi)

Ân

j=1 exp(yj)
, (15)

which essentially is the multivariate version of the logistic function [23]. With n = 2 and by
differentiating w.r.t. y1 we get:

∂

∂y1
LSE(y1, y2) =

exp(y1)

Â2
j=1 exp(yj)

. (16)

By further defining y1 = x and y2 = 0, the standard logistic function is obtained:

∂

∂x
LSE(x, 0) =

exp(x)
exp(x) + 1
| {z }
The standard

logistic function

. (17)

The complimentary logistic function is obtained by differentiating Equation (15) w.r.t. y2 = 0.166
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2.2.3. LogSumExp as a Function of g(x) and f (x)167

For y1 and y2 being the two functions f (x) > g(x) for x ! �• of zeroth or first order, and by
introducing the logistic growth rate k, Equation (16) can be rewritten as:

∂

∂ f (x)
LSE( f (x), g(x)) = f

0(x)
exp( f (x) k)

exp( f (x) k) + exp(g(x) k)
| {z }

The logistic function

. (18)

The indefinite integral of Equation (18) shown in (19), can now approximate the model in Equation
(1) with a smooth transition between the two functions described by the hyperparameter k:

LSE( f (x), g(x)) = log [exp( f (x) k) + exp(g(x) k)] k
�1

| {z }
Smooth approximation of max(( f (x), g(x))

(19)

The logistic function in Equation (18) is monotonically increasing and describes the smooth transition168

between the slopes of f (x) and g(x). Hence, Equation (18) approaches the numeric larger slope of the169

two as x ! �•, and the smaller slope as x ! •.170

2.2.4. Transition Interval171

As Equation (19) only approach f (x) and g(x) asymptotically, it is not possible to define a finite172

transition interval between the two functions.173

Instead, the transition interval can be defined as the interval of x for which Equation (18) is174

between p · 100 % and (1 � p) · 100 % of the right-hand side asymptotic limit of the function, where175

p 2 [0, 1].176

The transition interval can be found by solving for x in Equation (20) where f (x) > g(x) for
x ! �•:

lb < f
0(x)

exp( f (x) k)
exp( f (x) k) + exp(g(x) k)

< ub , (20)

where lb and ub is:

lb = f
0(x) + p(g

0(x)� f
0(x)) , (21)

ub = f
0(x) + (1 � p)(g

0(x)� f
0(x)) . (22)

In this study the values of p is fixed as p = 0.1177

Figure 1 summarises the concepts explained in Section 2.2. The upper plot shows the logistic178

function associated with the smooth maximum function shown in the lower plot. In the specific case179

p in Equation (21) and (22) is chosen to be 0.1, f (x) = �x, g(x) = 0, and k = 1. The red part of the180

curves shows the transition between f (x) and g(x), and f
0(x) and g

0(x) in the lower and upper plot,181

respectively.182

2.3. Unmodelled Heat Gains183

Notice that in the following there will not be distinguished between the constant UA value in e.g.184

Equation (3) and the wind dependent UA value as in Equation (9). All UA values will from now on be185

stated as UA(·), where · is the wind speed which may or may not be specified.186

So far the models considered have treated the sum of a number of heat gains and losses as the187

constant Fx. This is of course a crude simplification. However, instead of modelling the remaining188

heat gains explicitly, we propose a method where the heat gains are derived from the time ordered189

model residuals et.190
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Figure 1. Conceptual diagram of transition interval.

The assumption here is that the thermal dynamics (i.e. the absorption and release of heat in the191

thermal mass) are filtered out by using daily average values. Furthermore, latent heat exchange and192

heat exchange to the ground and to adjacent rooms located outside the thermal zone are assumed to193

be neglectable. Consequently, Fx is related to the building usage and therefore mainly the sum of194

ventilation losses and internal heat gains, such as electrical power usage and and the heat produced by195

the occupants through metabolism, domestic hot water usage and cooking.196

From the auto-correlation in Figure 4 in Section 4.2 it is clear that the day-to-day residuals are197

correlated. Given the above assumptions, it can be concluded that Tb0 = Ti � FxUA�1 is not constant.198

To model the variation of Tb0 over time t, we can set up the following model:

Tb0(t) = Ti �
Fx + DFx(t)

UA
+ #t = Ti �

Fx(t)
UA

+ #t , (23)

where DFx(t) is the time varying heat contribution to maintain the thermal balance.199

The residuals et from the earlier stated heat demand models can now be described as:

et = DFx(t) + #t . (24)

An estimate of the underlying function of et — namely DFx(t)— can be found by kernel
estimation. Kernel estimation is a non-parametric method used to determine hidden non-linear
functional relations. The kernel estimate is shown to be equal to the locally weighted least squares
estimate in [24]. Hence, the time varying model parameters b̂(t) is obtained by:

b̂(t) = arg min
b

1
N

N

Â
i=1

wi(t)(Yi � Xi b)2 . (25)

In the equation above i refers to the i
th vector element or matrix row, and wi(t) is the kernel weights:

wi(t) =
k[h�1(ti � t)]

1
N

ÂN

i=1 k[h�1(ti � t)]
, (26)
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where k is the Epanechnikov kernel [25] with bandwidth h. The bandwidth is found by leave-one-out200

cross validation as described in [24].201

Substituting Y with the model residuals et we obtain an estimate of DFx(t), and by inserting in202

Equation (23), a corrected time varying estimate of the base temperature Tb0(t) is obtained.203

2.3.1. Thermal Performance Evaluation204

It is clear from Equation (23) that it is not possible to estimate the indoor temperature Ti and the
heat gains Fx + DFx(t) separately. However, to evaluate a building’s thermal performance with a
given design temperature, the resulting heat gain related to the building use and its occupants can be
estimated by rearranging Equation (23):

Fx(t) = Fx + DFx(t) = UA(·) (Ti � Tb0(t)) . (27)

The estimate of Fx(t) can now be compared with the sum of heat gains related to metabolism and205

electricity consumption; and ventilation losses from an energy performance calculation.206

It should, however, be noticed that the results only are valid for days with weather dependent207

heat consumption.208

3. Experimental Setup209

3.1. Data210

16 random selected houses in Sønderborg in Southern Denmark have been used as demonstration211

case. The built year of the houses ranges from 1937 to 1996, and the heated floor area from 86 to212

173 m2. All houses are heated by district heating only, i.e. there is no additional and unmeasured heat213

sources in the houses except from internal gains. Finally, four of the houses have night-setback on the214

temperature set point.215

The only measurement used from the houses is the total heat consumption provided by216

Sønderborg Fjernvarme — a consumer owned district heating company in Sønderborg. In addition,217

outdoor temperature, wind speed and global solar irradiation is measured at the district heating plant218

which is within 10 km of the houses.219

The sky temperature estimates are obtain from the freely available reanalysis data set ERA5-Land220

provided by the Copernicus Climate Change Service [26]. The full documentation on the ERA5-Land221

can be found in [27].222

The heat consumption were measured every 10th minute, and the weather data is obtained for223

every hour. In the analyses, only daily averaged values are used from a period from January 2, 2009 to224

May 1, 2011.225

The original heat consumption data consists of both domestic hot water consumption and space226

heating. Before the analyses in this article the hot water consumption has been separated from the227

space heating by means of kernel smoothing as described and done in [28]. Hence, the estimated space228

hating has been used, rather than the total heat consumption.229

3.2. Software230

Each of the models tested has been set up in Template Model Builder (TMB) (version 1.7.16) [29] fitted231

with the global optimisation algorithm, Multi-Level Single-Linkage (MLSL), along side with the local232

optimiser Limited-memory BFGS, which is implemented in the R package for nonlinear optimisation,233

R Interface to NLopt (nloptr) (version 1.2.1) [30]. Version 3.5.1 of R [31] has been used throughout the234

study.235

Despite the choice of software in this article, the models can be estimated by using a broad range236

of optimisers and softwares.237
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Figure 2. Slope chart of root mean squared error (RMSE) of the seven models test on 16 houses. The
RMSE is based on a 20 % cross validation data set. Notice that the logarithmic scale is used meaning
that the slopes between the points indicates the relative change in RMSE.

4. Results238

In Sections 2.1.1 and 2.1.2 a series of model candidates for the weather dependent heat239

consumption were presented. The model for the weather independent heat consumption were defined240

in Equation (2). In Table 1 each model tested in this section is outlined and references to the specific241

equations are stated.242

Table 1. Model name overview and equation references. The bullet (•) indicates that the given inputs
are included in the specific model. Equations numbers under f (·) and g(·) refers to which models that
have been used in Equation (19). Model M0 distinguish itself from the remaining models, as the base
temperature Tb is fixed at 17 �C.

Model Input Eq.

Ta Ws Ig Tsky f (·) g(·)

M0 • – – – (7)
M1 • – – – (5)
M2 • • – – (9) (2)
M3 • • • – (10)
M4 • • • • (12)

4.1. Model Validation243

All models were fitted and validated by means of a five-fold cross validation where the244

hyperparameter k in Equation (19) was tuned. The training and validation data was splitted randomly245

in a 80/20 ratio. The root mean squared error (RMSE) on the validation set is shown in the slope chart246

in Figure 2, and each of the model names on the x-axis is found in Table 1.247

The corresponding RMSE for each house is given as a grey or black dot. The red line indicates the248

mean RMSE across all of the houses and the black indicates House 6 which we will study in details249

within this work. Notice that the RMSE is plotted on a logarithmic scale, i.e. the slopes of the lines250

between the points express the relative change in model error.251

Extending the very simple model, M0, with an extra degree of freedom (Tb0) shows a very clear252

general model improvement as expected.253

Model M2 and M3 are the model extensions which include wind and solar irradiation, respectively.254

For both models we see a decrease of the RMSE meaning that both wind and solar irradiation has a255

significant effect on the heat consumption. However, including solar gain has the largest positive effect256

on the model errors across all model extensions when the models are evaluated in a successive manner.257

This is also referred to as type I partition [32].258
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Finally, the heat loss related to long wave radiation (M4) does not affect any of the model259

predictions. The parameter #A in Equation (11) is simply estimated as such a low and insignificant260

value that it does not affect the RMSE.261

4.2. Residual Analysis262

In Figure 3 the residual analysis plot for House 6 is shown. Each row consists of three plots. 1)263

Model residuals of a given model, 2) the fit of its model extension, and 3) the residuals after the model264

extension.265

In the top-left plot in Figure 3 the residuals are shown for model M0. From the plot, a series of266

systematic errors around 8.0 to 17 �C, and a negative trend in the residuals is seen.267

The negative trend in the residuals is diminished after the M0 model is extended to the M1 model268

(top-right). However, the systematic errors are still present. The systematic error means that model M0269

and M1 are not capable of describing the days without space heating in the transition period.270

Lastly, in the residuals for temperatures below 8.0 �C a slight concave trend is seen for both M0271

and M1. These two patterns indicate that the heat consumption is not only a function of the outdoor272

temperature.273

In the second row of plots to the left, the residuals of M1 as a function of the wind speed are274

shown. The red dashed line indicates that the M1 model tends to underestimate the heat demand for275

wind speeds above ca. 2.5 m/s and overestimate the the heat demand for wind speeds below 2.5 m/s.276

Modelling the wind dependent heat loss as in M2 makes this tendency disappear.277

In the third row of plots to the left, the model residuals of M2 are compared to the global solar278

irradiation. In this case we see a negative linear trend in the residuals. This means that for days279

with high levels of solar irradiation the model overestimates the the space heating demand — simply280

because the model does not include the effect of solar gain. After implementing the solar gain in model281

M3 the residuals flattens out.282

It can be seen that the solar irradiation explains a lot of the variance in the transition period283

around 5 to 15 �C (third row, second column). In contrast to this, we see that the wind speed in the M2284

model (second row, second column) mainly explains the variance in the lower outdoor temperature285

range. As the heat loss due to wind is proportional to the outdoor temperature, and due the fact that286

the daily mean outdoor temperature is correlated with the solar irradiation, this is a reasonable result.287

Additionally, Figure 3 shows the residuals of the M3 model as a function of the outdoor288

temperature in row four, column three. Compared to the residuals of the previous models, we289

now see that the systematic error in the transition period disappears. Only a changing variance290

between weather dependent and weather independent days are seen. Hence, the solar gain is the main291

reason for the heating system turning on and off in the transition period.292

In the last row of plots the effect of long wave radiation between the building and its surroundings293

is shown. As expected, based on the unaffected RMSE in Figure 2, the residuals remains unaffected.294

Finally, the residuals as a function of time is shown in Figure 4 for model M3. A clear295

auto-correlation is found, and as argued for in Section 2.3, this is likely due to time correlated occupants296

behaviour. The time dependence is further modelled as described in Section 2.3 and is shown in Figure297

5.298

4.3. Parameter Sensitivity299

We demonstrated that the model including outdoor temperature, global solar irradiation and300

wind speed can describe the actual energy use of the buildings rather accurate. In this section, we will301

take a look at how two of the common parameters across all models (UA(·) and the base temperature302

Tb0) are affected by the different model formulations.303

In Figure 6 (top) the estimated UA(Ws) value for each house and model is shown. The UA(Ws)304

value is the UA value under influence of the mean wind speed (2.5 m/s) observed in the measurement305

period.306
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Figure 3. Forward model extension for House 6. The figure shows the effect of a particular model
extension, starting with the model residuals of Model M0 in the top-left corner. The figure is read
row-wise and each row represents a model extension. The models names in the top-left corner of the
individual plot can be found in Table 1. Notice that the x-axes of the residuals plots change depending
on the model extension.
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Figure 4. Analyses plots of auto-correlation in residuals of model M3 on House 6. The red dashed lines
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Equation (27) provided an indoor temperature of 20 �C.

Going from model M0 to M1 gives rise to both increments and reductions in the estimate of307

UA(Ws) and Tb0 . It is therefore not possible to state any general bias by fixing Tb0 ; it depends on the308

building and the occupants.309

Including the effects of the wind speed as done in M2 increase the estimated UA(Ws) value310

significantly and consistently for all houses. The effect on the base temperature Tb0 is more moderate311

and reduce it slightly.312

On the other hand, including solar gain in model M3 creates a small decrease in the UA(Ws)313

value, as well as in the base temperature.314

The introduction of long wave radiation is not affecting UA(Ws) nor Tb0 , and is totally irrelevant315

for the heat consumption as it is implemented in the M4 model.316
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Figure 6. Slope chart of UA(Ws) value and base temperature Tb0 of the six models on 16 different
houses. The UA(Ws) values are the heat loss under wind speed conditions corresponding to the mean
wind speed observed in the measurement period (2.5 m/s).
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Going from the simplest reasonable model (M1) to the best model (M3) gives an average change317

in the estimated UA(Ws) value of + 54 % for all the 16 considered buildings, with the smallest and318

largest change of + 26 % and + 84 %, respectively.319

The base temperature changes in average from M1 to M3 by � 8 %, with the smallest and largest320

change of � 1 % and � 11 %, respectively.321

4.4. Thermal Performance Characterisation322

Based on the finding in the previous sections the M3 model has been chosen as the most general323

and best performing model. In this section we will use that model and estimate the key thermal324

performance parameters for all of the 16 different houses.325

Table 2. Estimated performance parameters for 16 houses in Denmark. The number in parentheses
states the standard error of the parameters. UA0 is the heat loss coefficient under wind free conditions,
and UAW is the wind dependent increment in the UA value. The column for Ttransition states the range
of outdoor temperatures at which the building is in transition from heating to non-heating period,
given no wind and solar irradiation.

House Year Floor area U0 UA0 UAW gA F0 Tb Ttransition Fx(t) sFx(t)
[m2] [W/(K m2)] [W/K] [W/K per m/s] [m2] [W] [�C] [�C] [W] [W]

1 1970 151 1.25 (0.03) * 189 (4) * 58 (7) * 2.5 (0.3) * 676 (84) * 16.5 (0.5) 12.1 – 21.0 702 157
2 1969 163 1.25 (0.02) * 204 (4) * 39 (8) * 3.7 (0.3) * 340 (47) * 14.2 (0.4) * 9.5 – 18.9 1246 194
3 1963 140 1.28 (0.02) * 179 (2) * 32 (5) * 2.5 (0.1) * 141 (30) * 15.7 (0.2) * 11.9 – 19.5 810 103
4 1952 86 1.45 (0.03) * 125 (2) * 41 (5) * 1.5 (0.2) * 215 (19) * 12.8 (0.3) * 10.2 – 15.4 971 118
5 1966 111 1.54 (0.03) * 171 (3) * 61 (7) * 1.6 (0.2) * 110 (63) 16.6 (0.3) 9.6 – 23.6 643 155
6 1963 119 0.97 (0.02) * 115 (2) * 65 (6) * 2.8 (0.2) * 47 (19) * 13.3 (0.3) * 10.2 – 16.4 880 129
7 1947 119 2.17 (0.04) * 258 (5) * 72 (13) * 1.2 (0.4) * 6 (50) 13.5 (0.3) * 6.9 – 20.0 1810 243
8 1965 160 1.24 (0.04) * 199 (6) * 57 (14) * 2.2 (0.4) * 376 (45) * 12.6 (0.5) * 8.9 – 16.4 1569 258
9 1965 173 1.21 (0.02) * 210 (3) * 42 (6) * 1.2 (0.2) * 523 (62) * 18.2 (0.3) * 15.8 – 20.6 389 275
10 1996 135 0.90 (0.02) * 121 (2) * 51 (6) * 2.5 (0.2) * 106 (25) * 14.1 (0.4) * 10.2 – 18.0 786 193
11 1966 122 1.09 (0.04) * 133 (4) * 31 (11) * 1.2 (0.3) * 108 (46) * 14.7 (0.5) * 10.5 – 18.9 751 96
12 1975 136 1.05 (0.02) * 143 (2) * 31 (4) * 1.9 (0.1) * 644 (17) * 13.4 (0.3) * 11.3 – 15.4 1001 94
13 1937 86 2.67 (0.06) * 229 (5) * 92 (14) * 4.4 (0.4) * 45 (31) 11.2 (0.3) * 7.6 – 14.8 2227 431
14 1965 123 1.36 (0.02) * 167 (2) * 57 (6) * 2.4 (0.2) * 356 (22) * 14.1 (0.3) * 11.8 – 16.4 1068 203
15 1953 127 1.65 (0.03) * 209 (4) * 80 (10) * 3.1 (0.3) * 166 (35) * 13.0 (0.3) * 7.0 – 19.1 1593 210
16 1967 137 1.22 (0.02) * 167 (3) * 34 (7) * 1.3 (0.2) * 193 (26) * 13.5 (0.3) * 8.1 – 18.9 1137 143

H0 : U0 = 0 UA0 = 0 UAW = 0 gA = 0 F0 = 0 Tb = 17

Significance code ‘*’: p-value < 0.05

As an example, we see that House 6 has a UA0 value of 115 W/K in Table 2. The UA0 value326

represents the heat loss coefficient under weather conditions with a wind speed of 0 m/s. Even though327

House 6 has the smallest UA0 value estimated, the heat loss related to convection and infiltration328

(UAW) is the fourth highest among the 16 houses. This indicates that House 6 house potentially has329

some serious issues with air leakages.330

Looking at all the estimated UAW values all houses seems to be significantly affected by the wind.331

Furthermore, it is reasonable to believe that a high standard error (e.g. House 8) is a result of different332

wind effect from different wind directions, or by the fact that people often open and close the windows.333

Both scenarios will result in a high standard error.334

The base heat load F0 is the most varying parameter from house to house. If the heat consumption335

used to train the model only accounts for space heating this value tells if there is an unreasonable high336

base load. If it includes on the other hand the heating energy for hot water consumption as well, and337

the hot water consumption is known, a reasonable estimate of the base heat losses can be estimated.338

Tb tells at which outdoor temperature the house is in thermal balance, given the average of the339

other explanatory variables. Notice that the base temperature in f (·) is the base temperature under340

the assumption that the F0 = 0. Tb which is presented in Table 2 is the actual base temperature341

under average weather conditions. The base temperature varies from 11.2 �C to 18.2 �C. A low Tb0342

can — as stated in the Section 2.1.1 — mean three things. Either the internal gains are high, or the343
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Figure 7. Illustration of UA and UA(Ws) per heated floor area as function of construction year. The
black dots (left axis) show a clear increment in insulation level as the year of construction becomes
more recent. The red dots (right axis) show the sensitivity to wind. I.e. the level of air leakage.

indoor temperature is low, or the house is poorly insulated, or some sort of combination. The opposite344

it true for a high value of Tb0 .345

As the heat loss of the houses are based on daily averages input values, but do not know the346

indoor temperature and the heat gains related to the building use, we are not able to deduct the two347

latter. However, fixing the indoor temperature to e.g. the design temperature, we can estimate the348

remaining unobserved heat gains needed to obtain the design temperature. This is described in Section349

2.3. The mean (Fx(t)) and standard deviation (sFx(t)) of the stochastic process Fx(t) is stated in the350

two last columns of Table 2.351

The transition period Ttransition also shows varying spans over the considered buildings. The spans352

indicate, indirectly, to which extend the heating system is affected by the weather. I.e. a narrow band353

tells us that the building or the heating system is insensitive to rapid changing weather conditions,354

and visa versa.355

In Figure 7 the estimated U0 value and the wind dependent increment of the U value (UAW per356

m2 heated floor area) are plotted as a function of the year of construction. The bars around the dots357

indicates a 95 % confidence interval of the estimate.358

Regarding both U0 and UW the Figure shows that there is a negative trend in the estimates, which359

indicates that the thermal performance has increased during the years. Despite the sample is rather360

small, it seems like there is a significant difference between houses build before 1961, which is the year361

where the first energy frame came in force in Denmark, and after.362

Even though the negative trend is the same for the U0 and the UW values, the reduction of U0 for363

the individual houses does not necessarily lead to a reduction in UW. One example of this is shown for364

House 6, which has the lowest U0 value of the houses build between 1961 and 1980, but the one of the365

highest UW values in the same cluster.366

5. Discussion367

The key to minimise the model’s uncertainty is to model as many heat gains as possible. Hence,368

the inclusion of the readings of the electricity usage will improve the model accuracy further. Also369

readings of the heat consumption only would lower the uncertainty: At the same time, the readings370

from domestic hot water energy usage could be used an extra source of heat gain.371

However, for estimation of the two most important thermal performance parameters in this372

paper — the UA and UA(Ws) value — the above mentioned missing heat gains affect the estimates373

to a minor extend, as long as the heat gains are of approximately equal magnitude for all weather374

conditions. The reason for this is that such heat gains are additive terms in the model formulations,375
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and therefore do not influence the slope of the models. Therefore, to keep the models flexible and376

scalable, as few as possible measurements are preferred, as long as they do not introduce a serious bias377

to the estimated model parameters.378

In Section 2.3 we have shown how it is possible to model the residuals and estimate the required379

additional heat gain over time to obtain a specific indoor temperature. In Table 2, the mean and the380

standard deviation of the heat gain to maintain an indoor temperature of 20 �C is given for all 16381

houses.382

From the investigation of the residuals of model M3 (Figure 3) there is no clear sign for any383

missing effects that are a function of outdoor temperature, wind speed, global solar irradiation or384

long wave radiation. However, there is a correlation over time. Consequently, we have some time385

dependent dynamics which are not captured by the model.386

For a sample rate of one day or longer, the dynamics related to the heat capacities of the building387

should be averaged sufficiently out even though the long time constants often exceeds 24 h [10]. We388

can hence believe that the dynamics (which create the auto-correlation) consist of two main effects:389

changing temperature set-points and ventilation rates. I.e. both effects which are directly related to the390

building use (occupant behaviour).391

However, as a further development of the proposed model, the correlation of the residuals should392

be checked, and the heat capacity should eventually be modelled. One approach to this can be found393

in [8].394
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Figure 8. Conceptual illustration of performance gap and three causes of the discrepancy. Point A, B
and C are further explained in the following list.

In general, to document the actual energy performance of a building under usage (including the395

way the occupants affect this performance), a few design parameters used as input for the calculation396

of the building energy performance are required. Those include: the weather data (e.g. the design397

reference year (DRY) weather data), the design indoor temperature, internal heat gains, and ventilation398

losses. The actual energy performance evaluation can hence be done in several ways, to illuminate the399

different reasons causing the discrepancy between expected and realised energy use. In Figure 8 we400

illustrate the apparent performance gap and the three possible causes of discrepancy:401

A Unintended occupants’ related differences in the energy consumption can be estimated as the
difference between the estimated user related heat gain Fx(t), and:

Fx,design(t) = UA (Ti,design � Tb0(t)) + Fvent,design + Fint,design , (28)
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where the subscript design refers to design values, and Fvent,design and Fint,design is the intended402

design ventilation loss, and the intended internal heat gain, respectively.403

If Fx(t)� Fx,design(t) < 0 the ventilation loss is higher than expected in the design phase; the404

internal heat gains are lower than expected in the design phase; the indoor temperature is higher405

than the design temperature, or a combination. On the other hand, if Fx(t)� Fx,design(t) > 0 the406

ventilation losses, the indoor temperature or a combination is lower, or the internal heat gains407

are higher than assumed in the design phase.408

B Weather related differences in the energy use can be estimated by comparing the predicted409

energy use with the actual weather conditions, and the predicted energy use with the outdoor410

temperature, wind speed, and global solar irradiation used in the design phase. The model in411

(19) is used for prediction, where f and g is stated in (10) and (2), respectively.412

C Building envelope related differences in the energy use can be estimated as the difference between the413

predicted energy use (obtained using (19), (10) and (2)) and the weather and occupants corrected414

energy use obtained from point A and B, above.415

This kind of documentation can be valuable in building energy screenings, as those mentioned in the416

EPBD [2].417

6. Conclusion418

This study has shown that the typical linear energy signature methods fund in literature can be419

significantly improved by applying a non-linear and smooth model formulation.420

Only daily average heat consumption and measurements of outdoor temperature, wind speed421

and global solar irradiation were used as model input. From that, several measures for the thermal422

building performance were estimated, including: heat loss coefficients, heat losses related to convection423

and infiltration, solar transmittance, base heat load and transition periods. The use of so few variables424

as input makes the proposed method highly scalable and easily automatised. In the present study all425

of the 16 random selected houses were evaluated automatically.426

The proposed model showed that it is capable of describing the variance and non-linearities in427

the heat consumption data to a much greater extend than a simple energy signature with only the428

outdoor temperature as the explanatory variable.429

Based on the model residuals, the heat gains related to the building usage were estimated by430

means of non-parametric kernel estimation methods. The estimation of building use related heat431

consumption opens up for detailed building performance documentation and screening as outlined in432

the current energy performance of buildings directive (EPBD) [2]. For example, the impact on energy433

use related to weather, building use, and the building envelope itself can be estimated separately.434

The novel heat demand formulation using a smooth maximum function (LogSumExp) does435

not only provide a way of estimating the transition period where the energy consumption goes436

from weather dependent to weather independent. It also make it possible to make more advances437

model — such as state space models with hidden states — as the model is fully differentiable contrary438

to the traditional energy signature model.439

In the future three main issues should be addressed:440

1. In the present paper, only 24 hour average values were used with the argument that the effects441

of the heat capacities were averaged out as stated in [10]. Several tests on parameter sensitivity442

could be done with input variables averaged over longer and shorter periods than 24 h.443

Furthermore, the heat capacity could be modelled to account for potential dynamics related to444

the heat capacities of the building. Residuals (et) with no cross-correlation in the differentiated445

outdoor temperature (corr(et, Ta,t � Ta,t�1) ⇡ 0), will indicate that no thermal dynamics are left446

unmodelled. However, auto-correlation in the residuals might still appear, which will indicate447

time correlated building use. E.g. the building use in one time step is correlated with the next.448
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2. In Figure 6 it was shown that the wind speed had a tremendous effect on the estimated heat loss.449

Even though the model predictions improved, it might be worth investigating other ways of450

modelling the wind’s effect on the heat consumption. As the effects are highly dependent on451

surroundings, building geometry and other unknown factors, it is suggested to model the wind452

dependence by means of non-parametric methods such as kernel estimation.453

3. As the variance of the model residuals are highly dependent on the outdoor temperature they454

are seemingly heteroskedastic, i.e. not constant. The implication of that is that the standard455

errors of the model parameters are biased. To improve that, the model should be formulated as a456

weighted least square problem where the weights are the inverse of the error variance.457
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Abstract

Buildings represent a large portion of the total energy consumption and they will serve as a significant thermal storage capacity
that can be advantageous for the future energy grid. To utilise this capacity it is necessary to understand building dynamics and
develop strategies that could use it. In addition, the methods need to be general enough to be applicable to a significant share of the
building stocks. This work proposes a model to characterise the thermal dynamics of thermostatically controlled buildings. The
method builds on stochastic differential equation models of the heat transfer in buildings. By selecting the relevant data periods,
we are able to reduce the system dimensions while keeping its physical interpretation. Then we use these periods to summarize
building heat dynamics into two parameters. This method works with limited data and shows promising results that could be used
for categorizing buildings according to their thermal response. Finally, we study how the model output reveals information about
the energy flexibility potential of the building.

Keywords: Building characterisation, data analysis, modelling, energy flexibility, demand response

1. Introduction

In order to successfully introduce demand response policies
that support a large scale transition from fossil fuel to renewable
energy based energy supply, there is a need for understanding
buildings’ thermal dynamics as they will be a key asset in the
future flexible energy systems [1].

There are several approaches for estimating the main indi-
cators of the building energy performance: the heat loss co-
efficient (or its inverse, the thermal resistance) and the ther-
mal capacity [2]. One option is to estimate them using nu-
merical tools, such as the finite volume methods (FVM)[3].
This approach is computationally expensive, and relies either
on simulated data or complex experimental assemble. A differ-
ent approach was presented as the co-heating method [4]. This
method is based on simplified heating dynamic equations de-
scribing the heat transfer inside a building. This method showed
accurate results assessing the energy performance of buildings;
however, it needs a meticulous experimental set up to control
and measure the temperature, and the experiment can take mul-
tiple days. In addition, the measurements are bound to the ex-
ternal conditions during the experimental period. Finally, due
to the necessary infrastructure for the assessment, it can only be
performed in empty houses. Alternatively, in [5], a new method

∗Corresponding Author
Email address: jpre@dtu.dk
Postal Address: Anker Engelunds vej 1, Building 101A, 2800 Kongens Lyngby, Denmark

is introduced that could evaluate the building thermal response
in a two days experiment. This represents an improvement from
the traditional co-heating method. Nevertheless, it still requires
an extensive experimental set up. In addition, there often exists
a performance gap between the model prediction using thermal
parameters estimated with the above methods and the real op-
erational energy performance of the building [6][7].

For existing buildings, the grey-box model approach is often
used, as it takes into account building physics in data-driven
modelling. In [8] multiple variations of the lumped resistance-
capacity (RC) model are presented and it is shown that such
models make it possible to estimate the heat resistance and ca-
pacity for different components of the house. This method al-
lows the use of in-situ measures of operative houses. However,
this approach still needs a considerable amount of data to de-
couple the different processes that are part of the energy flow.
Also, the complexity of these models can easily grow, burden-
ing the computation. For this reason, and specially when work-
ing with large data sets, it is important to use strategies to re-
duce the order of the models, as suggested in [9]. Even with
high quality data, it could be difficult to gain insights into the
building dynamics. For instance, during the periods where the
building is thermostatically controlled, the impact of external
variables over the indoor air temperature might be masked by
the effects of the controller, which makes it impossible to esti-
mate the thermal capacities.
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In this study, we suggest a simple and efficient method to
scan buildings and retrieve their thermal characteristics. Specif-
ically, we compute time constants of the dynamics of the build-
ings, which show how fast the heat loss is. Thus, these param-
eters reveal the potential of that particular building to be used
as a flexible storage unit for thermal energy. In order to do so,
we identify the night periods with no heat input and fit an auto-
regressive model given the measurements from those periods.
It is important to emphasize that this method does not require
a particular experimental set up: the measurements are taken
with in-use buildings.

The considered method is built upon the well known RC
models that often are used to describe the thermal dynamics
in buildings. There are many studies developing complex RC
model configurations as they try to fit in all building compo-
nents taking part in the heat transfer of buildings [8]. Such
studies are based on data sets with a large number of variables,
e.g. temperatures of all components, which are not commonly
measured in existing buildings. In this work, in an effort to pur-
sue generality, we take the opposite direction to build simple
models using scarce data measured in buildings.

Our method is general enough to be applied in a significant
portion of the current building stocks. The only requirement is
that the buildings follow a night setback schedule. This sched-
ule is a commonly used strategy to decrease the energy con-
sumption during night with a lower temperature setpoint than
during daytime. Given that Danish buildings are well insulated
in general, indoor temperatures do not decrease to the level of
causing discomfort to residents during night-time. During these
hours, it can be assumed that there is no influence on the in-
door temperature from the users as they most likely are asleep.
There is also no solar irradiation affecting the indoor tempera-
ture. Thus, the pattern of temperature decreasing during nights
can be understood as a building fingerprint that explains its en-
ergy storage performance.

1.1. Outline
This study is divided in three sections, followed by a conclu-

sion. In Section 2, the mathematical background of the applied
method is explained; the model structure and its physical inter-
pretation are discussed, and the method for data selection and
the concepts used in the flexibility analysis are described. Sec-
tion 3 describes the data used in the study. Section 4 shows the
modelling results, an interpretation of the system dynamics and
the estimated values of time constant for a number of buildings.
In Section 5, a simulation framework is used to show how the
building intrinsic parameters affect the time constants, and how
the time constants provide information about the flexibility po-
tential of the building.

2. Method

In this section, it is shown how an auto-regressive model is
derived from a stochastic RC model. The purpose of this ap-
proach is to offer a physical interpretation of the parameters.
Then, it is explained how the time constants are computed us-
ing the transfer function form of the auto-regressive model.

Our proposed method only works for specific periods of time;
here, the method to select the relevant data periods is presented.

Finally, the concepts of flexibility index (FI) and flexibility
function (FF) that we use in section 5 are presented.

2.1. Building as a second order dynamical system
Equation (1) describes a general continuous time model for

heat dynamics inside of a building. It tracks the temporal evo-
lution of two main variables inside the building: the indoor air
temperature, Ti, and the thermal mass temperature, Tm. The
model is represented as a second order linear stochastic dif-
ferential equation (SDE) system. This system has three main
external inputs: the outdoor temperature, Ta, the global solar
irradiation, Ig, and the space heating input, Φh. This model has
five parameters {Ri,Ra,Ci,Cm, Aw} that are described in Table
1. The uncertainty in the system is captured by the stochastic
term, dωi ∀i ∈ [1, 2]. This term represents a Wiener process
with incremental variances σ2

i ∀i ∈ [1, 2].
The external inputs affect only the indoor air temperature;

in turn, there is a heat transfer between the indoor air and the
thermal mass. For a detailed description of the model, see [10].



dTi =
1
Ci

(
1
Ri

(Ti − Tm) −
1

Ra
(Ti − Ta) + Φh+

IgAw

)
dt + σ1dω1

dTm =
1

RiCm
(Tm − Ti) dt + σ2dω2

(1)

Since the system in Equation (1) is linear, it can be re-written
using the following matrix form,


dTi

dt

dTm

dt

 =


1

RiCi
−

(
1

RaCi
+

1
RiCi

)
−1

RiCm

1
RiCm




Ti

Tm

 (2)

+


1

RaCi

1
Ci

Aw

Cm

0 0 0




Ta

Φh

Ig

 +


σ1 0

0 σ2




dω1

dt

dω2

dt

 .

Now, the model variable is a vector: T(t) = (Ti(t), Tm(t))>, and
U(t) = (Ta(t), Φh(t), Ig(t))> is the vector of external inputs. We
can write Equation (2) in a compact form as

d
dt

T(t) = AT(t) + BU(t) + Σ
d
dt
ω(t) , (3)

where A is the design matrix describing the dynamic character-
istics of the building, and B describes how the input variables
enter the system. Finally, ω(t) = (ω1(t), ω2(t))> is the stochas-
tic term, and Σ is the matrix of incremental variances.

In this work, only the indoor air temperature, Ti is observed.
It is important to notice that the system described in Equation
(1) has no measurement equation. Thus, we assume that the
error measurements for Ti are small enough to be disregarded.
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Description Units
Ri Thermal resistance: indoor air↔ thermal mass [K/kW]
Ra Thermal resistance: indoor air↔ outdoor air [K/kW]
Ci Thermal capacity of the indoor air [kWh/K]
Cm Thermal capacity of the thermal mass [kWh/K]
Aw Effective window area [m2]
σ1 Incremental variance of Ti [K]
σ2 Incremental variance of Tm [K]

Table 1: Model parameters

2.2. From SDEs to auto-regressive
As shown in [10], the system in Equation (3) can be dis-

cretized by integrating over a sample interval, [t, t + s), where
s is the sampling time of the system. Then, assuming that the
input (U(t)) is constant in the sampling interval, the system can
be re-written as

T(t + s) = Φ(s)T(t) + Γ(s)U(t) + ν(t, s) . (4)

If the sampling time is small enough, the discrete time model
structure will capture the relevant dynamics described in the
continuous case. We can fix the sampling time to an arbitrary
time unit, s = 1, and find he explicit expression for the elements
describing Equation (4):

Φ(s = 1) = exp(A · 1) =

(
φ11 φ12
φ21 φ22

)
(5)

Γ(s = 1) =

∫ s=1

0
exp(A · r)Bdr =

(
Γ11 Γ12 Γ13
Γ21 Γ22 Γ23

)
(6)

ν(t, s = 1) =

(
ν(1)

t

ν(2)
t

)
with ν(i)

t = N(0, ς2
i ) ∀i ∈ [1, 2] . (7)

In this case, Φ describes the discrete dynamics of the system
and Γ the effect from the external inputs. The vector ν is
normally distributed white noise with zero mean and variance
ς2

i ∀i ∈ [1, 2], and it accounts for the stochastic part of the sys-
tem.

This study is focused on the dynamics of buildings with a
night heating setback. Thus, if there is no solar irradiation and
the space heating is turned off, the input term can be simplified
to U = (Ta, 0, 0)>. It is then possible to write discrete explicit
expressions for the indoor air temperature and the thermal mass:

T i
t+1 = φ11T i

t + φ12T m
t + Γ11T a

t + ν(1)
t

T m
t+1 = φ21T i

t + φ22T m
t + Γ21T a

t + ν(2)
t ,

(8)

where the notation has been changed to highlight the discrete
nature of the expression.

Now, we want to remove the thermal mass variable from the
model, since we do not have access to its associated temperature
measurements. In order to do this, the equations from Equation
(8) have been merged, adjusting the index t,

T i
t+1 = φ11T i

t + φ12

T m
t︷                                         ︸︸                                         ︷

(φ21T i
t−1 + φ22T m

t−1 + Γ21T a
t−1 + ν(2)

t−1) +

Γ11T a
t + ν(1)

t .

(9)

For houses with regular heating schedules that have not been
ventilated recently, the temperature of the thermal mass should
be very similar to the temperature of the indoor air [11]. As-
suming that T i

t−1 ≈ T m
t−1, it is possible to reduce the expression

to Equation (10), where all variables are observed

T i
t+1 = φ11T i

t + (φ12φ21 + φ12φ22)T i
t−1+

Γ11T a
t + φ12Γ21T a

t−1 + ν(1)
t + φ12ν

(2)
t−1 .

(10)

During winter, the outdoor temperature varies slowly during
night, as shown in Figure 1. For a small enough time step,
there is little change from one measurement to the next one, i.e.
T a

t ≈ T a
t−1 ∀t. This simplification allows us to reduce the system

complexity:

T i
t+1 =

θ1︷︸︸︷
φ11 T i

t +

θ2︷                ︸︸                ︷
(φ12φ21 + φ12φ22) T i

t−1 +

ω︷           ︸︸           ︷
(Γ11 + φ12Γ21) T a

t +

ν(1)
t + φ12ν

(2)
t−1 ,

(11)

where the final model parameters, {θ1, θ2, ω}, have been intro-
duced.

Finally, a new stochastic variable is defined, νt = ν(1)
t−1 +

φ12ν
(2)
t−2. Since ν(1)

t and ν(2)
t are independent and normally dis-

tributed with zero mean ∀t; the new variable, νt, is also nor-
mally distributed with zero mean. Thus, it is possible to write
the final model as the following auto-regressive model,

T i
t = θ1T i

t−1 + θ2T i
t−2 + ωT a

t + νt , (12)

where the time index, t, has been adjusted for clarity.

2.3. A system with two time constants

In order to study the heat loss between the indoor air and the
outdoor air, we focus on the interaction between T i

t and T a
t from

model (12) using the transfer function as shown in Equation
(13),

T i
t =

ω

1 − θ1B − θ2B2︸             ︷︷             ︸
H(B)

T a
t , (13)

where B is the backshift operator defined as B jXt = Xt− j for an
arbitrary dynamic random variable {Xt}, and H(B) is the transfer
function of the system (12). As described in [12], in order to
compute the time constant of the system (12) it is necessary
to find the roots of the denominator of H(B), i.e., the poles of
the system. In this case, there are two poles, q1 and q2, as the
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Figure 1: The lattice on the left shows the temporal evolution of the outdoor
temperature for 4 different nights. The hourly evolution reveals a slow varia-
tion of the temperature. On the right, the temperature hourly differences for
all winter nights is shown. The differences are always mild and concentrated
around 0.

polynomial in the denominator is order two. Finally, each pole
has an associated time constant which can be computed as:

τ j =
s

ln |q j|
∀ j ∈ [1, 2] . (14)

iHence, in this case there are two different time constants that
characterize the heat flow between indoor air and outdoor air.
Each of these time constants has time units and they reveal in-
formation about the two processes described by the initial sys-
tem (2) as illustrated in Figure 2. In general, when the heating
is shut down, there is a quick heat transfer between the indoor
air and the thermal mass due to the low thermal capacity of the
air. As described in [10], the initial heat transfer is captured by
the parameter τ1. The heat transfer between indoor air and out-
door air is the second process, which is characterized by τ2, is
slower and will dominate the dynamics as indoor temperature
keeps decreasing [10].

Figure 2: This figure shows a schematic of the two main processes governing
the heat flow between indoor air and outdoor air. First, the heat transfers from
the indoor air to the thermal mass, which is characterized by τ1. Meanwhile,
the heat is transferred from the indoor air to the outdoor air; this is characterized
by τ2.

Figure 3: An example of the distribution of decay points for one arbitrary build-
ing with night setback. The figure on the left shows the distribution of data
points dt . It shows that the decay states distribute different from other states.
The figure on the right shows the indoor temperature of a day with the thicker
curve indicating the decay period selected using the HMM method.

2.4. Identification of night setback temperature curves

All studied houses showed a temperature decay of the indoor
air during night hours. There are multiple methods to detect de-
caying behaviours. One example is the use of statistical change
point detection of the transformed signal of interest as done in
[13]. In the present work, we use hidden Markov model (HMM)
on the indoor temperatures observations to identify the periods
of night setback. The same method was used in [14] to detect
various human activities using CO2 concentration data.

HMM consists of two components: an observed sequence of
states and a corresponding hidden state sequence. The current
state only depends on the state of the previous observation. The
states change according to a fitted transition matrix, which is
a matrix providing the probability of a state change. For each
state, the observations are Gaussian, and the mean and variance
depends on the state. In order to identify the states, a new vari-
able was created to be used as an input for the model:

dt = T i
t − T i

t−1 . (15)

Tracking the distribution of dt we were able to spot the peri-
ods where the temperature is decaying. The Viterbi algorithm
is used to find the most likely sequence of states given a se-
quence of observed data points. A mathematical representation
of HMM and the Viterbi algorithm are provided in [15].

The data points corresponding to times when temperature is
continuously dropping are distributed differently from the rest,
as can be seen in Figure 3. For some houses, the selected pe-
riods are not only the long night decaying periods, but also
shorter decays during the day time due to the dead-band of the
controller. The long night decays are selected with a threshold.
This threshold was computed by clustering all dt data points
into two based on the length of the period. In general, it is con-
cluded that this process is sufficient to reveal the natural split
between short daytime decays (unwanted) and long night de-
cays, although the time spans vary from house to house because
of their different time constants.
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2.5. Flexibility index (FI) and Flexiblity Function (FF)

In order to gain insights into the relationship between the
time constant and the flexibility of a building, the concepts of
the Flexibility Index (FI) [16] and the Flexibility Function (FF)
[17] are used. The FI quantifies the savings caused by allocat-
ing energy consumption in a flexible way. This is done by com-
paring the cost of the consumption adapted to a flexible control
signal (flexible cost) and the cost of the consumption if the sys-
tem was unaware of the price signal (ignorant cost). The idea
behind the FI can be seen in equation (16). FI = 1 characterizes
a building with an extreme flexibility potential, and FI = 0 the
opposite.

FI = 1 −
Flexible cost
Ignorant cost

(16)

The flexibility function (FF) describes the energy that is avail-
able at a particular moment, or state of charge; and the re-
sources it can allocate and how it can allocate them before
reaching the system limits. This function provides information
about how an energy system would adapt to changes in the con-
trol signal or changes in its state of charge. Moreover, an energy
system has limited resources that can be turned on/off in case
of need, and the rate at which it is able to move those resources
depends on the dynamic characteristics of each system. The
theoretical foundation for these two concepts, FI and FF can be
found in [16] and [17].

When calculating the FI and FF in this work, the energy sys-
tems are buildings that have their indoor air temperature con-
trolled with an MPC controller. Then, the state of charge trans-
lates into the room temperature: the building is completely
charged when the indoor temperature reached its daily maxi-
mum inside the comfort boundaries and vice-versa. The heat-
ing input is controlled by a price signal which is built using the
wind speed data. This price signal can also be based on other
data and be used for other purposes such as peak shaving, or
lowering CO2 emissions.

3. Data description

This study is based on measurements from a set of 39 Danish
single family houses in the Middelfart region in Denmark. All
of the buildings were built between 1960s and 1980s. In this
paper they are identified by 5 digit numbers. There are two data
sets. The first data set contains the indoor temperature measure-
ments from December 2014 to December 2015. We used only
the winter data between December 2014 and March 2015 and
with a 10 min resolution. The second data set consists of hourly
outdoor temperature values. This data set has been selected to
match the dates of the indoor temperature data. In order to com-
pensate the lower resolution, the hourly values are interpolated
using linear interpolation. This interpolation are carried under
the assumption that, during winter nights the fluctuations in out-
door temperature are slow.

For better presentation and visualization of the work, the rest
of this work focuses on three buildings with representative de-

Figure 4: Temperature decays of three example houses. On the left it can be
seen a 4 day period for three different households (A, B, C). The area corre-
sponds to the decay hours is highlighted. On the right, the lines corresponding
to all decay periods present in the time series of three month data are shown.
This visualization reveals that each building has its clear decay pattern. The
mean of every decay pattern is plotted as the darker dashed line.

cay patterns, as shown in Figure 4. It can be noticed that build-
ing B shows a sharp decay at the beginning and then a slower
decaying trend; building A has a fast temperature drop; and
building C has a shorter decay curve, but still steeper than the
curve in B. For all the three example buildings, the decaying
patterns are consistent during different nights. For instance, it
can be noticed that in building C, the decaying trend is similar
in every case even though the initial indoor temperature varies.

4. Results and discussions

This section presents the results from the modelling process.
These results are also discussed to understand how the thermal
dynamics are captured. Afterwards, this section offers a classi-
fication of the buildings based on their time constants.

4.1. Model validation

The parameters from the model in Equation (12) were esti-
mated using ordinary least squares (OLS) method in the first
place, since the model is linear and the noise is supposed to be
normally distributed. This revealed that the term related to the
outdoor temperature, ω, was not significant in most of the tested
buildings. However, as presented in Section 2, the outdoor air
temperature affects the heat loss dynamics. This impact is more
noticeable at the end of the decaying curve, when the heat ex-
change with the outdoor air is more significant than the heat
exchange with the thermal mass. In addition, at the beginning
of the decay trend, the assumption that T i

t ≈ T m
t is less accurate,

since in reality both temperatures converge over time. Lastly, at
the beginning of the decaying curve there is a higher chance
than the users might be awake. All these reasons suggest that
the noise over time, {νt}, might not be independent. In fact, the
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system noise is expected to be at its maximum at the beginning
of the decay and then continuously decrease over time. In or-
der to cope with this, the weighted least squares (WLS) method
was used, where the models is fitted giving a specific weight to
each observation. These weights are proportional to the time
since the temperature decay started, given that the observations
become more reliable as time moves forward. The following
equation was used for the weighting process,

w(k) = 1 −
1

α + (1 − α)k
with 0 ≤ α ≤ 1 , (17)

where k is an integer counting the number of measurements
since the beginning of the decay period and α is a tuning param-
eter. Notice that w ∈ [0, 1], it is minimum right at the beginning
of the decay period, w(1) = 0, and then grows monotonically.
The parameter α defines how fast is this growth; i.e. how the
weights are distributed along the decay period. Notice that this
parameter depends on the time constants of the building and it
could be fine-tuned in a recursive method in order to fit a partic-
ular building. Thus, it is important to remark that this weighting
function is not unique and it could be adapted to each case.

Estimate Std. error p-value

OLS WLS OLS WLS OLS WLS

B
ui

ld
in

g
A θ̂1 1.768 1.779 0.016 0.017 <1E-16 <1E-16

θ̂2 -0.769 -0.781 0.016 0.017 <1E-16 <1E-16

ω̂ 4.3E-4 3.3E-4 2.5E-4 2.9E-4 0.09 0.26

B
ui

ld
in

g
B θ̂1 1.111 1.273 0.024 0.023 <1E-16 <1E-16

θ̂2 -0.113 -0.275 0.024 0.023 <1E-16 <1E-16

ω̂ 1.8E-3 1.5E-3 2.4E-4 2.6E-4 <1E-16 <1E-16

B
ui

ld
in

g
C θ̂1 1.624 1.707 0.015 0.015 <1E-16 <1E-16

θ̂2 -0.625 -0.708 0.015 0.015 <1E-16 <1E-16

ω̂ 2.8E-4 1.3E-4 1.4E-4 1.7E-4 0.05 0.45

Table 2: Table comparing the parameter estimates for each example building.
The table shows the results using WLS using function in (17) compared with
the OLS.

Table 2 compares the results after fitting the model with OLS
and WLS. Notice how, after using WLS, the p-values of the pa-
rameter estimates are below 0.1, confirming that the parameters
are highly significant. It can also be noticed that the estimate of
the contribution of the outdoor temperature, ω̂, increased sig-
nificantly using the WLS, especially for houses A and C, which
confirms the influence of the external conditions.

Figure 5 reveals that the ordinary residuals, after using the
WLS, behave like white noise regardless of the outdoor con-
ditions. It also can be seen that most of the residuals are in
the [−0.1, 0.1] range, which show the accuracy of the one-step
prediction. The values that fall outside of this range are from
the beginning of the decaying periods when it is expected to be
noisy, as explained previously. The distribution of residuals can
be seen in Figure 6, which shows that the errors are small and
centered around zero.
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Figure 5: The figure shows the relationship between the outdoor air temperature
and the residuals using the WLS model. The residuals from the first hour of
each decay are marked with an x. The trend of all residuals is plotted as a
dashed line. It is shown that there is no effects from the outdoor air to the
residuals, since all residuals are centered around 0 and evenly spread across all
temperature range.

Figure 6: Distribution of residuals after using the WLS model. The figures
include all the decays in the time span of interest ignoring the first hour of each
decay. For each building a smooth curve was plotted for better visibility.

In Figures 5 and 6 it is not possible to see if the residuals are
biased on a daily basis. For this reason, the evolution of resid-
uals are plotted for 3 arbitrary days picked at random for each
example building in Figure 7. It can be seen from this figure
that in all cases the prediction follows the same pattern. At the
beginning of the decay period, the model is over-predicting so
the residuals are negative and larger. This bias comes from the
simplification T i

t ≈ T m
t , since it forces the stochastic part to ac-

count for the changes in T m
t . However, shortly after the start the

residuals converge to white noise, since T i
t → T m

t quickly [10].
These transient periods are the cause of the larger residuals seen
in Figure 5.

4.2. Time constant of 39 houses
The time constants of the three example buildings are shown

in Table 3; it is important to notice that τ1 is expressed in min-
utes, whereas τ2 is expressed in hours. These results can be
compared with the qualitative behaviour observed in Figure 4.
In comparison with the other two, building B shows a flatter
decay trend at the end of each night. This translates into having
τ(B)

2 > τ(C)
2 > τ(A)

2 . In addition, the numerical results in Table
3 reveal that building B loses energy swiftly at the beginning
of the decay, which is different from house A where the heat
transfer between the indoor air and thermal mass also has a sig-
nificant contribution to the decay period.

Moreover, the results of house A were compared with the
results computed using a different method presented in [18],
where a more complex auto-regressive model (including heat-
ing data) was fitted using a time span of 11 days. The difference
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Figure 7: Temporal evolution of the residuals during each decay period. Only 3
decays are plotted for better visibility. It can be seen that the ordinary residuals
are larger at the beginning of the decay period, but shortly after there is no
observable trend.

τ1 [min] τ2 [hour]

Building A 38.8 36.7
Building B 4.6 65.6
Building C 21.5 49.7

Table 3: Results for the example houses. For house A the results are compared
with the results obtained using a different model described in [18] which are
shown in brackets.

between results were smaller than an 8%. In addition, it is im-
portant to remark that it is possible to further reduce the differ-
ence between the results by fine-tuning the weighting function
(17), specifically for house A.

The simplicity and generality of this method has allowed us
to use it in the total pool of 39 buildings and to categorize their
parameters τ1 and τ2. Figure 8 shows the distribution of the
time constants for all 39 buildings. It can be observed that: i)
the long time constant, τ2, has the same order of magnitude as
the time constant one would expect from Danish family houses
[19, 20]; ii) for the short time constant, τ1, all values are shorter
than one hour, which highlights the importance of a small time
step to capture this part of the dynamics. From Figure 8 it can
be seen that the 39 buildings are clustered in groups. K-means
clustering method [21] was used and as the result three clusters
are marked in the figure. Note that each of the three selected
buildings falls in different categories, confirming the qualitative
differences in their heat loss dynamics spotted at the beginning
of this work.

In figure 8, one can get a clear picture at the available classes
of buildings in the studied set. On the short time constant axis,

Figure 8: Scatter plot of the two time constants for 39 buildings. As the result
of a K-means clustering, three regions are marked in the figure. In each cluster,
the example house is highlighted.

τ1, the time values are mostly scattered, contrarily to the τ2
where most of the values lie around the bottom half of the plot.
Furthermore, it can be seen how the main driver for cluster-
ing comes from the long time constant τ2, i.e., the three main
regions reveal three different steps along the y-axis. The dif-
ference among three clusters could be due to the difference in
insulation level, house size, the amount of thermal mass, etc.
However, to investigate this level of detail would require more
information about these houses which we do not have, thus it
was left out of the current study.

5. Flexibility assessment

This section shows the application of using the computed
time constants of the house to reveal its energy flexibility po-
tential based on simulations.

The simulations are based on the model described in (2) and
carried out using different parameter values to gain an overview
of their impact. Specifically, the parameters of the indoor air
heat resistance, Ri, and the capacity of the indoor air, Ci, were
fixed; while the heat resistance between the indoor and outdoor
air, Ra, and the capacity of the thermal mass, Cm, were changed
in each simulation. The first two parameters depend on intrin-
sic magnitudes of the air; meanwhile, the last two parameters
are easier to interpret and they characterize magnitudes from a
building that are easier to correct through renovation. Finally,
the only external output of the model, the outdoor temperature,
follows an arbitrary pattern that matches the order of magnitude
of danish winter time.

For each combination of parameters, a time series of four
days was simulated with a night-setback schedule. Using those
values, the time constants were computed, and the results can
be seen in Figure 9. It can be seen that both parameters are
directly proportional to the value of the time constants, as ex-
pected. Three cases have been highlighted (H1, H2 and H3) to
represent three buildings with a different parameter combina-
tion. These have been chosen to further assess the effects of the
parameters on the building thermal performance.
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Figure 9: Heat map of the resulting time constant values for different values of
Cm and Ra. The increase of Ra yields higher values of both time constants. The
increase of Cm benefits only τ2. H1, H2 and H3 represent three different houses
with different characteristics.

For each combination of parameters shown in Figure 9, we
simulated four days using two different control strategies: one
ignores the price signal and only tries to keep the indoor tem-
perature inside a defined comfort region. In the other simula-
tion, the heating system is controlled using Model Predictive
Control (MPC), where the control signal is the price of energy.
The MPC controller tries to minimize the operation cost using
the aforementioned price signal, while also keeping the indoor
temperature within the comfort region. These two strategies
represent the Ignorant Cost and Flexible Cost as described in
Section 2.

For the simulations, we created a price signal that depends on
the wind speed during an arbitrary period of time, to simulate a
system powered by wind energy. The energy price decreases
as the wind speed increases, assuming that energy supply is
always sufficient.

The results of the controlled simulation for the three high-
lighted cases (H1, H2, H3) are presented in Figure 10. It can
be seen that when the price is low, the heating is switched on
and when the price increases the heating is turned off until the
temperature approaches the lower boundary. It can be noticed
that the heating in H3 could be turned off for a longer time due
to the building’s higher time constants. The indoor air temper-
ature in building H2 never reached the upper boundary of the
comfort region due to higher heat losses.

It can be seen in Figure 11 that the resistance Ra is the key
parameter to increase savings using the flexibility of the build-
ing.

Lastly, the results of the flexibility function of the three
houses can be seen in Figure 12. This figure summarizes how
the three different houses react to a change in the two main
drivers of the energy consumption: the room temperature and
the energy price. This reaction is presented as the deviation
from the ignorant consumption; i.e. the consumption of the sys-
tem ignoring the flexible price signal. The three houses display
a similar response to the state of charge: a flat section, where
the system ignores the variations of the indoor temperature, and

Figure 10: Simulation of the flexible control scenario for the representative
houses. The indoor temperature follows the schedule of the heat supply, which
is controlled by the price signal at the bottom of the plot. It can be seen that H3,
due to its high thermal resistance and capacity, is able to keep indoor temper-
ature within the comfort region with the heating system running for a shorter
time comparing to other two houses.

Figure 11: Heat map
of the resulting Flex-
ibility Index value
for different values
of Cm and Ra. It
can be noticed that
the main driver for
the FI is the ther-
mal resistance. H1,
H2 and H3 represent
three different houses
with different charac-
teristics.
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two steep curves at the ends of the temperature range. When the
room temperature reached the low boundary, the system was
forced to increase consumption to maintain comfort; similarly,
the system decreases consumption when the room temperature
reached the high boundary. It can be noted that H3 is able to
stay on the flat region for a wider temperature range than the
other two. This suggests that H3 is more resilient to changes in
the room temperature than the H1 and H2.

The response to energy price follows a decreasing curve for
the three houses. For lower prices, the power demand of H1 is
below H2 and H3. As the price increases, H3 consumption gets
below H1 and H2. This result is in line with the results in Figure
11, and confirms that the high value of the FI of H3 is the result
of avoiding expensive prices. The savings of H1 compared to
H2 come mainly from decreasing consumption during cheaper
hours.
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Figure 12: Results of the flexibility function. The figure shows that the energy
demand is affected by changes on the state of the system (room temperature)
and the variations in the control signal (energy price). The dashed line rep-
resents the regular consumption if it was not affected by the price signal and
indoor temperature; the scale is normalized so this dashed line lies right in the
middle. The curve above the dashed line means that the consumption is in-
creased, and vice-versa. It can be seen that H3 is more resilient to changes in
the room temperature, and it is able to consume less during the most expensive
hours.

6. Conclusions

This study shows how one can obtain insights from the ther-
mal characteristics of a building with limited data. First of all,
Hidden Markov Models were used to select the relevant periods
to extract measurements from the periods with a night-setback.
By focusing on these long decaying periods, it has been possi-
ble to transform a complete physical system to a simple auto-
regressive structure. This model structure only uses the indoor
air temperature and the outdoor air temperature, which are nor-
mally easy to measure.

It is important to use a high resolution sampling to capture
the fast dynamics inside the building. In this study, 10-minute
time interval data was used. This small time step made it pos-
sible to reduce the model structure by taking advantage of the
slow changes and small variations of the outdoor temperature.
Additionally, the resulting time constants highlighted the im-
portance of choosing a small time step. The only external
input of our model, the outdoor temperature, was measured
hourly and was transformed to 10-minute data using linear-
interpolation taking advantage of its slow dynamics.

It is critical to understand the physical meaning of the model.
In order to fit the model, it was necessary to take into account
the decreasing trend of the system noise during the night by us-
ing the WLS method. Only by doing this, all parameters in the
model became significant. This is important because the tem-
perature decay inside of a building could potentially be caused
by other factors: such as the air mixing in the same room, or
a heat transfer to a much colder contiguous room. The signif-
icance of the parameter corresponding to the outdoor air con-
firms that the indoor air decreases due to a heat loss to the out-
door air, which validates our model assumptions.

This method offers a general and computationally light
model that can be scaled to a large portion of the existing build-
ing stocks. By visualizing the two time constants for all 39
buildings as shown in Figure 8, three clusters of buildings with

similar characteristics could be easily found. In this study, we
used a simple clustering method to identify those building clus-
ters.

The usability of each time constant depends on the specific
problem. The long time constant is the one that gives a clearer
picture of buildings’ characteristics for thermal storage and it is
also closely related to the classical time constant used in build-
ing physics. However, the short time constant could be relevant
for studying short term flexibility and indoor comfort.

Finally, it is confirmed that there is a clear connection be-
tween the time constants and the flexibility potential of build-
ings. It is shown that the long time constant dominates the po-
tential usage of a house as a energy storage unit in a flexible
energy grid. Moreover, using the FF, it is possible to assess
qualitatively the flexible response of the simulated houses. In
conclusion, the results show that a house with higher values of
τ1 and τ2 can implement more flexible strategies.
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sen. On site characterisation of the overall heat loss coefficient: Compar-
ison of different assessment methods by a blind validation exercise on a
round robin text box. Energy and buildings, 153:179–189, 2017.

[7] D. Cali, T. Osterhage, R. Streblow, and D. Müller. Energy performance
gap in refurbished german dwellings: Lesson learned from a field test.
Energy and buildings, 127:1146–1158, 2016.

[8] P. Bacher and H. Madsen. Identifying suitable models for the heat dy-
namics of buildings. Energy and Buildings, 43:1511–1522, 2011.

[9] S. Goyal and P. Barooah. A method for model-reduction of non-
linear thermal dynamics of multi-zone buildings. Energy and Buildings,
47:332–340, 2012.

[10] H. Madsen and J. Holst. Estimation of continuous-time models for the
heat dynamics of a building. Energy and buildings, 22:67–79, 1995.

[11] K. Foteinaki, R. Li, A. Heller, M. H. Christensen, and C. Rode. Dy-
namic thermal response of low-energy residential buildings based on in-
wall measurements. E3S Web of Conferences, 111, 2019.

[12] H. Madsen. Time series analysis. Chapman Hall, 2008.
[13] C. Rasmussen, R. Relan, and H. Madsen. Identification of Occupancy

Status by Statistical Change Point Detection of CO2 Concentration. In
2018 IEEE Conference on Control Technology and Applications (CCTA),
pages 1761–1766. IEEE, 2018.

9

113



[14] S. Wolf, J. Kloppenborg Møller, M. A. Bitsch, J. Krogstie, and H. Mad-
sen. A markov-switching model for building occupant activity estimation.
Energy and Buildings, 183:672–681, 2019.

[15] C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
[16] R. Gronborg Junker, A. Gashem Azar, R. Amaral Lopes, K. Byskov Lind-

berg, G. Reynders, R. Relan, and H. Madsen. Characterizing the energy
flexibility of buildings and districts. Applied energy, 225:175–182, 2018.

[17] R. G. Junker, C. S. Kallesøeb, J. Palmer Real, B. Howard, A. Lopes,
and H. Madsen. Stochastic nonlinear modelling and application of price-
based energy flexibility. submitted, 2020.

[18] S. Nordli. Statistical methods for optimizing renovation projects. Master’s
thesis, DTU Compute, 2018.

[19] P. Bacher, H. Madsen, H. A. Nielsen, and B. Perers. Short-term heat load
forecasting for single family houses. Energy and Buildings, 65:101–112,
2013.
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